PHYSICALLY PARAMETERIZED DIFFERENTIABLE MUSIC FOR DOA ESTIMATION WITH UNCALIBRATED ARRAYS

Baptiste CHATELIER^{‡,†}, José Miguel MATEOS-RAMOS*, Vincent CORLAY[‡], Christian HÄGER*, Matthieu CRUSSIERE[†], Henk WYMEERSCH*, Luc LE MAGOAROU[†]

- † Univ Rennes, INSA Rennes, CNRS, IETR-UMR 6164, Rennes, France
- ‡ Mitsubishi Electric R&D Centre Europe, Rennes, France
- * Department of Electrical Engineering, Chalmers University of Technology, Sweden

ICC 2025, Montreal - June 10, 2025

Typical data processing setting:

We observe a *large* number of *correlated* variables, explained by a *small* number of *independent* factors.

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

- Machine learning/Artificial intelligence
 - Data based
 - Low bias
 - High complexity

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

- Machine learning/Artificial intelligence
 - Data based
 - Low bias
 - High complexity

Hybrid approach: Model-based AI

Use models to structure, initialize and train learning methods

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

- Machine learning/Artificial intelligence
 - Data based
 - Low bias
 - High complexity

Hybrid approach: Model-based AI

Use models to structure, initialize and train learning methods

Make models more flexible: reduce bias of signal processing methods

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

- Machine learning/Artificial intelligence
 - Data based
 - Low bias
 - High complexity

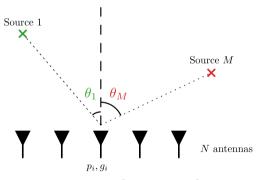
Hybrid approach: Model-based AI

Use models to structure, initialize and train learning methods

- Make models more flexible: reduce bias of signal processing methods
- Guide machine learning methods: reduce their complexity

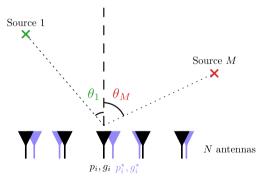
DOA ESTIMATION PROBLEM

• From measurements on N distinct antennas, how to estimate the direction of arrivals $\theta = [\theta_1, \dots, \theta_M]$ of M non-coherent far-field sources?



DOA ESTIMATION PROBLEM

• From measurements on N distinct antennas, how to estimate the direction of arrivals $\boldsymbol{\theta} = [\theta_1, \dots, \theta_M]$ of M non-coherent far-field sources, even with an imperfect antenna array?



Antenna parameters: $\pmb{\zeta} = \left[\left\{g_i\right\}_{i=1}^N, \left\{p_i\right\}_{i=1}^N\right]$

System model:

$$\mathbf{X} = \mathbf{A}_{\zeta}(\boldsymbol{\theta})\,\mathbf{S} + \mathbf{N}$$

with $\mathbf{X} \in \mathbb{C}^{N \times T}$, $\boldsymbol{\theta} \in [-\pi/2, \pi/2]^M$, $\mathbf{A}_{\boldsymbol{\zeta}}\left(\boldsymbol{\theta}\right) \in \mathbb{C}^{N \times M}$, $\mathbf{S} \in \mathbb{C}^{M \times T}$, $\mathbf{N} \in \mathbb{C}^{N \times T}$

System model:

$$\mathbf{X} = \mathbf{A}_{\zeta}(\boldsymbol{\theta})\,\mathbf{S} + \mathbf{N}$$

with $\mathbf{X} \in \mathbb{C}^{N \times T}$, $\boldsymbol{\theta} \in [-\pi/2, \pi/2]^M$, $\mathbf{A}_{\boldsymbol{\zeta}}\left(\boldsymbol{\theta}\right) \in \mathbb{C}^{N \times M}$, $\mathbf{S} \in \mathbb{C}^{M \times T}$, $\mathbf{N} \in \mathbb{C}^{N \times T}$

• N=16 antennas (ULA)

System model:

$$\mathbf{X} = \mathbf{A}_{\zeta}(\boldsymbol{\theta})\,\mathbf{S} + \mathbf{N}$$

with $\mathbf{X} \in \mathbb{C}^{N \times T}$, $\boldsymbol{\theta} \in \left[-\pi/2, \pi/2\right]^{M}$, $\mathbf{A}_{\boldsymbol{\zeta}}\left(\boldsymbol{\theta}\right) \in \mathbb{C}^{N \times M}$, $\mathbf{S} \in \mathbb{C}^{M \times T}$, $\mathbf{N} \in \mathbb{C}^{N \times T}$

- N=16 antennas (ULA)
- T = 100 snapshots

System model:

$$\mathbf{X}=\mathbf{A}_{oldsymbol{\zeta}}\left(oldsymbol{ heta}
ight)\mathbf{S}+\mathbf{N}$$

with $\mathbf{X} \in \mathbb{C}^{N \times T}$, $\boldsymbol{\theta} \in [-\pi/2, \pi/2]^M$, $\mathbf{A}_{\boldsymbol{\zeta}}(\boldsymbol{\theta}) \in \mathbb{C}^{N \times M}$, $\mathbf{S} \in \mathbb{C}^{M \times T}$, $\mathbf{N} \in \mathbb{C}^{N \times T}$

- N=16 antennas (ULA)
- T = 100 snapshots
- M non-coherent sources

System model:

$$\mathbf{X} = \mathbf{A}_{\zeta} \left(\boldsymbol{\theta} \right) \mathbf{S} + \mathbf{N} \tag{1}$$

with
$$\mathbf{X} \in \mathbb{C}^{N \times T}$$
, $\boldsymbol{\theta} \in [-\pi/2, \pi/2]^M$, $\mathbf{A}_{\boldsymbol{\zeta}}(\boldsymbol{\theta}) \in \mathbb{C}^{N \times M}$, $\mathbf{S} \in \mathbb{C}^{M \times T}$, $\mathbf{N} \in \mathbb{C}^{N \times T}$

- N=16 antennas (ULA)
- T=100 snapshots
- M non-coherent sources
- ζ: parameters of the array manifold

System model:

$$\mathbf{X} = \mathbf{A}_{\zeta} \left(\boldsymbol{\theta} \right) \mathbf{S} + \mathbf{N} \tag{1}$$

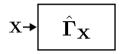
with $\mathbf{X} \in \mathbb{C}^{N \times T}$, $\boldsymbol{\theta} \in [-\pi/2, \pi/2]^M$, $\mathbf{A}_{\boldsymbol{\zeta}}(\boldsymbol{\theta}) \in \mathbb{C}^{N \times M}$, $\mathbf{S} \in \mathbb{C}^{M \times T}$, $\mathbf{N} \in \mathbb{C}^{N \times T}$

- N=16 antennas (ULA)
- T=100 snapshots
- M non-coherent sources
- ζ: parameters of the array manifold

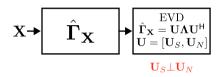
How to estimate θ from X?

 \mathbf{X}

• Input: measurements

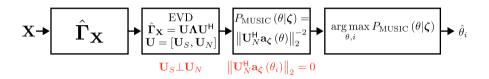


• Compute the sample covariance matrix from measurements

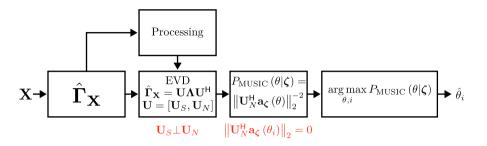


Apply EVD on the sample covariance matrix

Compute the MUSIC spectrum



Find peaks and estimate DoAs



 If the sources are correlated: possibility of finding a surrogate covariance matrix through additional processing¹

¹Shmuel et al., "SubspaceNet: Deep Learning-Aided Subspace Methods for DoA Estimation".

MUSIC METHOD VISUALIZATION

• What happens if ζ is not perfectly known?

MUSIC METHOD VISUALIZATION

Estimation error if ζ is not perfectly known. How to learn ζ ?

CONTRIBUTIONS

• Differentiable MUSIC algorithm to learn HWI through stochastic gradient-descent

CONTRIBUTIONS

- Differentiable MUSIC algorithm to learn HWI through stochastic gradient-descent
- Problem-specific supervised and unsupervised loss functions

Main idea: leverage SGD to solve

minimize
$$\mathbb{E}_{(\boldsymbol{\theta}, \mathbf{X}) \sim \mathcal{P}_{(\boldsymbol{\theta}, \mathbf{X})}} \left[\mathcal{L} \left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}} \left(\mathbf{X} | \boldsymbol{\zeta} \right) \right) \right],$$
 (P1) subject to $\boldsymbol{\zeta} \in \mathbb{C}^N \times \mathbb{R}^N$

Main idea: leverage SGD to solve

- Requires computing: $abla_{\zeta}\mathcal{L}\left(oldsymbol{ heta},\hat{oldsymbol{ heta}}\left(\mathbf{X}|\zeta
ight)
ight)$

(P1)

Main idea: leverage SGD to solve

minimize
$$\mathbb{E}_{(\boldsymbol{\theta}, \mathbf{X}) \sim \mathcal{P}_{(\boldsymbol{\theta}, \mathbf{X})}} \left[\mathcal{L} \left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}} \left(\mathbf{X} | \boldsymbol{\zeta} \right) \right) \right],$$
 subject to $\boldsymbol{\zeta} \in \mathbb{C}^N \times \mathbb{R}^N$

• Requires computing: $\nabla_{\zeta} \mathcal{L}\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}\left(\mathbf{X}|\zeta\right)\right) = \nabla_{\hat{\boldsymbol{\theta}}\left(\mathbf{X}|\zeta\right)} \mathcal{L}\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}\left(\mathbf{X}|\zeta\right)\right) \nabla_{\zeta} \hat{\boldsymbol{\theta}}\left(\mathbf{X}|\zeta\right)$

(P1)

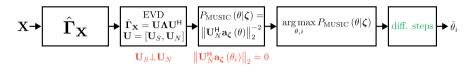
Main idea: leverage SGD to solve

minimize
$$\mathbb{E}_{(\boldsymbol{\theta}, \mathbf{X}) \sim \mathcal{P}_{(\boldsymbol{\theta}, \mathbf{X})}} \left[\mathcal{L} \left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}} \left(\mathbf{X} | \boldsymbol{\zeta} \right) \right) \right],$$
 (P1) subject to $\boldsymbol{\zeta} \in \mathbb{C}^N \times \mathbb{R}^N$

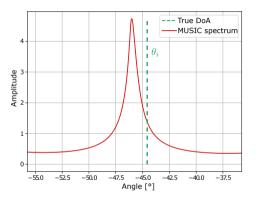
- Requires computing: $\nabla_{\zeta}\mathcal{L}\left(\boldsymbol{ heta},\hat{\boldsymbol{ heta}}\left(\mathbf{X}|\zeta\right)
 ight) = \nabla_{\hat{\boldsymbol{ heta}}\left(\mathbf{X}|\zeta\right)}\mathcal{L}\left(\boldsymbol{ heta},\hat{\boldsymbol{ heta}}\left(\mathbf{X}|\zeta\right)
 ight)
 abla_{\zeta}\hat{\boldsymbol{ heta}}\left(\mathbf{X}|\zeta\right)$
 - The $rg \max$ in MUSIC leads to the non-existence of $\nabla_{\mathcal{L}} \hat{\boldsymbol{\theta}} \left(\mathbf{X} | \boldsymbol{\zeta} \right)$

MUSIC is non-differentiable → diffMUSIC

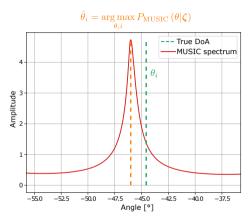
PROPOSED METHOD: TOWARDS DIFFMUSIC



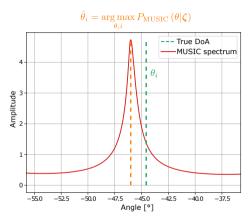
 diffMUSIC consists in the addition of differentiable processing steps after the peak-finding method.



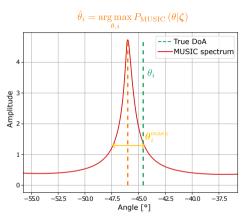
- Compute the MUSIC spectrum with current array knowledge ζ : $P_{
m MUSIC}\left(\theta|\zeta\right)$



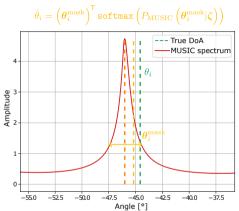
· Find peaks in the spectrum



For each peak, estimate the DoA:

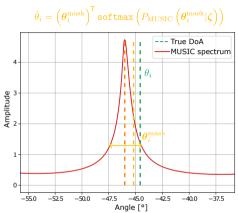


- For each peak, estimate the DoA:
 - Select neighbor angles through windowing: \(\theta_i^{\text{mask}} \)

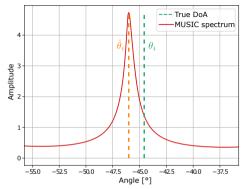


- For each peak, estimate the DoA:
 - Select neighbor angles through windowing: $\boldsymbol{\theta}_i^{\mathrm{mask}}$
 - Convex combination: $\nabla_{\zeta} \hat{\boldsymbol{\theta}} \left(\mathbf{X} | \boldsymbol{\zeta} \right)$ exists \rightarrow differentiable.

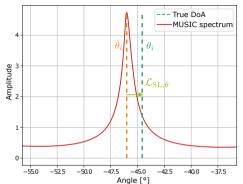
PROPOSED METHOD: DIFFMUSIC DETAILS



• Update the array parameters: $oldsymbol{\zeta} \leftarrow oldsymbol{\zeta} - \mu
abla_{oldsymbol{\zeta}} \mathcal{L}\left(oldsymbol{ heta}, \hat{oldsymbol{ heta}}\left(\mathbf{X} | oldsymbol{\zeta}
ight)
ight)$



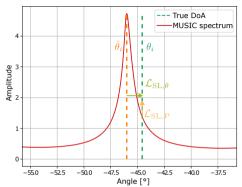
• How to design task-adapted loss functions to learn ζ ?



Minimize the estimation error: RMSPE

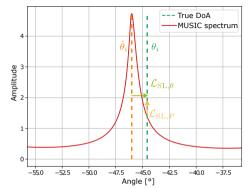
$$\mathcal{L}_{\mathrm{SL},\theta} = \frac{1}{|\mathcal{T}|} \sum_{(\boldsymbol{\theta}, \mathbf{X}) \in \mathcal{T}} \min_{\mathbf{P} \in \mathcal{P}} \sqrt{\frac{1}{M} \left\| \mathrm{mod}_{\pi} \left(\boldsymbol{\theta} - \mathbf{P} \hat{\boldsymbol{\theta}} \left(\mathbf{X} | \boldsymbol{\zeta} \right) \right) \right\|_{2}^{2}}$$
(3)

CHATELIER et al.

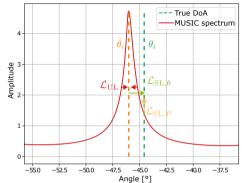


Maximize spectrum amplitude at true DoA locations:

$$\mathcal{L}_{\mathrm{SL},P} = -\frac{1}{|\mathcal{T}|} \sum_{(\boldsymbol{\theta}, \mathbf{X}) \in \mathcal{T}} \sum_{i} P_{\mathrm{MUSIC}}(\theta_{i} | \boldsymbol{\zeta})$$
(3)



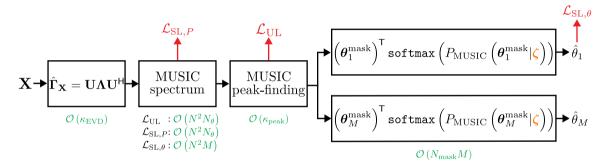
Requires a-priori knowledge of the true DoAs!



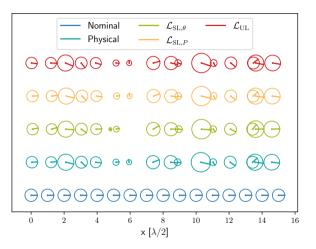
 Unsupervised learning: maximize spectrum sharpness within the chosen angular window (Jain's index based)

$$\mathcal{L}_{\text{UL}} = \frac{1}{|\mathcal{T}|} \sum_{\mathbf{X} \in \mathcal{T}} \sum_{i} \Im\left(P_{\text{MUSIC}}\left(\boldsymbol{\theta}_{i}^{\text{mask}}\left(\mathbf{X}|\boldsymbol{\zeta}\right)|\boldsymbol{\zeta}\right)\right)$$
(3)

CHATELIER et al.

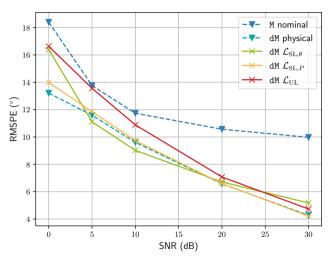


EXPERIMENTAL RESULTS: $N=16, M=5, \mathrm{HIGH}$ HWIS



• The proposed method learns the impairments

EXPERIMENTAL RESULTS: $N=16, M=5, \mathrm{High\ HWIS}$



The proposed method performs well under noise

EXPERIMENTAL RESULTS: PERFORMANCE AGAINST BASELINES

		Baselines				$\mathcal{L}_{\mathrm{SL}, heta}$		$\mathcal{L}_{\mathrm{SL},P}$		$\mathcal{L}_{\mathrm{UL}}$	
		M (nom.)	M (phys.)	dM (phys.)	SubspaceNet	М	dM	М	dM	М	dM
RMSPE (°)	M = 1	2.425	0.014	0.013	0.098	0.019	0.015	0.013	0.013	1.339	1.310
	M = 5	9.976	4.358	4.275	16.123	5.371	5.178	4.325	4.209	4.834	4.731

Baseline comparisons

The proposed method outperforms classical MUSIC and SubspaceNet

CONCLUSION

- Contributions:
 - MUSIC can be modified to be differentiable
 - HWIs can be learned while performing DoA estimation
 - Better results than MUSIC with unknown impairments

CONCLUSION

- Contributions:
 - MUSIC can be modified to be differentiable
 - HWIs can be learned while performing DoA estimation
 - Better results than MUSIC with unknown impairments
- Future work:
 - Extend the method to coherent sources → spatial augmentation method
 - Extend the method to near-field \rightarrow new dictionary expression
 - Combine with SubspaceNet \rightarrow learn both the surrogate covariance matrix and the array parameters

