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MODEL-BASED MACHINE LEARNING
Typical data processing setting:
• We observe a large number of correlated variables, explained by a small number of

independent factors.

• Make models more flexible: reduce bias of signal processing methods
• Guide machine learning methods: reduce their complexity
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DOA ESTIMATION PROBLEM
• From measurements on N distinct antennas, how to estimate the direction of arrivals
θ = [θ1, . . . , θM ] of M non-coherent far-field sources?
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DOA ESTIMATION PROBLEM
• From measurements on N distinct antennas, how to estimate the direction of arrivals
θ = [θ1, . . . , θM ] of M non-coherent far-field sources, even with an imperfect antenna
array?
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DOA ESTIMATION PROBLEM: MATHEMATICAL FORMULATION

• System model:
X = Aζ (θ)S+N (1)

with X ∈ CN×T , θ ∈ [−π/2, π/2]M , Aζ (θ) ∈ CN×M , S ∈ CM×T , N ∈ CN×T

• N = 16 antennas (ULA)
• T = 100 snapshots
• M non-coherent sources
• ζ: parameters of the array manifold
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X = Aζ (θ)S+N (1)

with X ∈ CN×T , θ ∈ [−π/2, π/2]M , Aζ (θ) ∈ CN×M , S ∈ CM×T , N ∈ CN×T

• N = 16 antennas (ULA)
• T = 100 snapshots
• M non-coherent sources
• ζ: parameters of the array manifold

How to estimate θ from X ?
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MUSIC METHOD

• Input: measurements
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MUSIC METHOD

• Compute the sample covariance matrix from measurements
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MUSIC METHOD

• Apply EVD on the sample covariance matrix
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MUSIC METHOD

• Compute the MUSIC spectrum
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MUSIC METHOD

• Find peaks and estimate DoAs
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MUSIC METHOD

• If the sources are correlated: possibility of finding a surrogate covariance matrix through
additional processing1

1Shmuel et al., “SubspaceNet: Deep Learning-Aided Subspace Methods for DoA Estimation”.
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MUSIC METHOD VISUALIZATION

• What happens if ζ is not perfectly known?
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MUSIC METHOD VISUALIZATION

Estimation error if ζ is not perfectly known. How to learn ζ?
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CONTRIBUTIONS

• Differentiable MUSIC algorithm to learn HWI through stochastic gradient-descent

• Problem-specific supervised and unsupervised loss functions
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PROPOSED METHOD: MUSIC NON-DIFFERENTIABLITY

• Main idea: leverage SGD to solve

minimize
ζ

E(θ,X)∼P(θ,X)

[
L
(
θ, θ̂ (X|ζ)

)]
, (P1)

subject to ζ ∈ CN × RN

• Requires computing:

• The argmax in MUSIC leads to the non-existence of∇ζ θ̂ (X|ζ)
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• The argmax in MUSIC leads to the non-existence of∇ζ θ̂ (X|ζ)

MUSIC is non-differentiable→ diffMUSIC
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PROPOSED METHOD: TOWARDS DIFFMUSIC

• diffMUSIC consists in the addition of differentiable processing steps after the peak-finding
method.
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PROPOSED METHOD: DIFFMUSIC DETAILS
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• Compute the MUSIC spectrum with current array knowledge ζ: PMUSIC (θ|ζ)
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• Find peaks in the spectrum
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PROPOSED METHOD: DIFFMUSIC DETAILS
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• For each peak, estimate the DoA:

• Select neighbor angles through windowing: θmask
i

• Convex combination:∇ζ θ̂ (X|ζ) exists→ differentiable.
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• Update the array parameters: ζ ← ζ − µ∇ζL
(
θ, θ̂ (X|ζ)

)
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PROPOSED METHOD: LOSS FUNCTIONS
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• How to design task-adapted loss functions to learn ζ?
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PROPOSED METHOD: LOSS FUNCTIONS
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• Minimize the estimation error: RMSPE

LSL,θ =
1

|T |
∑

(θ,X)∈T
min
P∈P

√
1

M

∥∥∥modπ

(
θ −Pθ̂ (X|ζ)

)∥∥∥2
2

(3)
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PROPOSED METHOD: LOSS FUNCTIONS
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• Maximize spectrum amplitude at true DoA locations:

LSL,P = − 1

|T |
∑

(θ,X)∈T

∑
i

PMUSIC (θi|ζ) (3)
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Requires a-priori knowledge of the true DoAs!
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PROPOSED METHOD: LOSS FUNCTIONS
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• Unsupervised learning: maximize spectrum sharpness within the chosen angular
window (Jain’s index based)

LUL =
1

|T |
∑
X∈T

∑
i

J
(
PMUSIC

(
θmask
i (X|ζ) |ζ

))
(3)
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PROPOSED METHOD: LOSS FUNCTIONS
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EXPERIMENTAL RESULTS:N = 16,M = 5, HIGH HWIS
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• The proposed method learns the impairments
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EXPERIMENTAL RESULTS:N = 16,M = 5, HIGH HWIS
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• The proposed method performs well under noise
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EXPERIMENTAL RESULTS: PERFORMANCE AGAINST BASELINES

Baselines LSL,θ LSL,P LUL

M (nom.) M (phys.) dM (phys.) SubspaceNet M dM M dM M dM

RMSPE
(◦) M = 1 2.425 0.014 0.013 0.098 0.019 0.015 0.013 0.013 1.339 1.310

M = 5 9.976 4.358 4.275 16.123 5.371 5.178 4.325 4.209 4.834 4.731

Baseline comparisons

• The proposed method outperforms classical MUSIC and SubspaceNet
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CONCLUSION

• Contributions:
• MUSIC can be modified to be differentiable
• HWIs can be learned while performing DoA estimation
• Better results than MUSIC with unknown impairments
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CONCLUSION

• Contributions:
• MUSIC can be modified to be differentiable
• HWIs can be learned while performing DoA estimation
• Better results than MUSIC with unknown impairments

• Future work:
• Extend the method to coherent sources→ spatial augmentation method
• Extend the method to near-field→ new dictionary expression
• Combine with SubspaceNet→ learn both the surrogate covariance matrix and the

array parameters
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THANKS!
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