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MODEL-BASED MACHINE LEARNING

Typical data processing setting:

We observe a large number of correlated variables, explained by a small number of
independent factors.
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Typical data processing setting:

We observe a large number of correlated variables, explained by a small number of
independent factors.

There are two complementary approaches to handle this situation:

Signal processing Machine learning/Artificial intelligence
Model based Data based
Large bias Low bias
Low complexity High complexity
Hybrid approach: Model-based Al
Use models to structure, initialize and train learning methods J

Make models more flexible: reduce bias of signal processing methods
Guide machine learning methods: reduce their complexity
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DOA ESTIMATION PROBLEM
From measurements on /N distinct antennas, how to estimate the direction of arrivals

0 = [01,...,05] of M non-coherent far-field sources?
I
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Antenna parameters: ¢ = [{gz‘}fil ; {Pi}fil]
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DOA ESTIMATION PROBLEM
From measurements on /N distinct antennas, how to estimate the direction of arrivals

0 = [01,...,05] of M non-coherent far-field sources, even with an imperfect antenna
array?
|
Source 1
X I
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Antenna parameters: ¢ = [{g,}f\;l , {pl}fil]
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DOA ESTIMATION PROBLEM: MATHEMATICAL FORMULATION

System model:
X=A;(0)S+N (1)

withX € CN*T, 9 ¢ [—m/2,7/2]M, A¢ (8) € CV*M S ¢ CM*T N ¢ CN*T
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System model:
X=A:0)S+N (1)

withX € CN*T, 9 ¢ [—m/2,7/2]M, A¢ (8) € CV*M S ¢ CM*T N ¢ CN*T

N = 16 antennas (ULA)

T = 100 snapshots

M non-coherent sources

¢: parameters of the array manifold

How to estimate 0 from X ? J
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MUSIC METHOD

Input: measurements
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MUSIC METHOD

X I‘X

Compute the sample covariance matrix from measurements
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MUSIC METHOD

R _ EVD
X )| T'x — UAU
I'x U= [Us, Uy]
UglUy

Apply EVD on the sample covariance matrix
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MUSIC METHOD

X ~ ; E\I/JDAUH Pyusic (0|€) =
—>| | L'x = > —2
I'x U= [Us, Uy][ |[ITRac )],

UslUy  ||[UNac (6], =0

Compute the MUSIC spectrum
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MUSIC METHOD

~ . EVD Y Pyusic (0|€) =
X FX | I'x = UAU"

_o || arg max Pyusic (0/€) | 0;
U= [Us,Uy)| |ITRac @), o

UslUy  ||[UNac (6], =0

Find peaks and estimate DoAs
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MUSIC METHOD

v

Processing

v
X ~ ; E\I/JDAUH Pyusic (0|€) =
-> | Ix = N -
I'x U= [Us, Uy |[ORac @],

Is 0 A
> arggflinax MUSIC ( |C) —> ),

UslUy  [[URac (6)],=0

If the sources are correlated: possibility of finding a surrogate covariance matrix through
additional processing?!

!Shmuel et al., “SubspaceNet: Deep Learning-Aided Subspace Methods for DoA Estimation”.
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MUSIC METHOD VISUALIZATION

1225 aci (0)]

50

What happens if ¢ is not perfectly known?
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MUSIC METHOD VISUALIZATION

U ac (9) 115
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Estimation error if { is not perfectly known. How to learn (?
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CONTRIBUTIONS

Differentiable MUSIC algorithm to learn HWI through stochastic gradient-descent
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CONTRIBUTIONS

Differentiable MUSIC algorithm to learn HWI through stochastic gradient-descent

Problem-specific supervised and unsupervised loss functions
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PROPOSED METHOD: MUSIC NON-DIFFERENTIABLITY

Main idea: leverage SGD to solve

miniénize E0,%)~P0x, [,c (e,é(x;c))} : (P1)

subjectto ¢ € CN x RY
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PROPOSED METHOD: MUSIC NON-DIFFERENTIABLITY

Main idea: leverage SGD to solve

miniénize E0,%)~P0x, [,c (e,é(xyc))} : (P1)

subjectto ¢ € CN x RY

Requires computing: VL (9, 6 (X]C)) = Voxio)L <0, 0 (X\C)) Ve (X([¢)
The arg max in MUSIC leads to the non-existence of Vcé (X]|¢)

MUSIC is non-differentiable — diffMUSIC J
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PROPOSED METHOD: TOWARDS DIFFMUSIC

~ : EVD y Prusic (0/€) = arg max Pyusic (0/¢€) X
X I X < = UAUM || NN MUST . steps b 6,
U = [Us, Uy] HU%aC (H)HZ 0.i e
s1Uy  [[URac ()], =0

diffMUSIC consists in the addition of differentiable processing steps after the peak-finding

method.
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PROPOSED METHOD: DIFFMUSIC DETAILS

—--True DoA
——MUSIC spectrum

w
L

Amplitude

-550 -525 -500 -475 -450 -425 -400 -375
Angle [°]

Compute the MUSIC spectrum with current array knowledge ¢: Pyusic (0/€)
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PROPOSED METHOD: DIFFMUSIC DETAILS

0 arg max Pyiusic (0/€)

—--True DoA
——MUSIC spectrum

0;

Amplitude

-550 -525 -500 -475 -450 -425 -400 -375
Angle [°]

Find peaks in the spectrum
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PROPOSED METHOD: DIFFMUSIC DETAILS

0 arg max Pyiusic (0/€)

—--True DoA
——MUSIC spectrum

0;

Amplitude

-550 -525 -500 -475 -450 -425 -400 -375
Angle [°]

For each peak, estimate the DoA:
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PROPOSED METHOD: DIFFMUSIC DETAILS

0 arg max Pyiusic (0/€)

—--True DoA
——MUSIC spectrum

0;

w
L

Amplitude
N

1
1
1
1
1
1
t
1
1
1
I
1

1N

-550 -525 -500 -475 -450 -425 -400 -375
Angle [°]

For each peak, estimate the DoA:

Select neighbor angles through windowing: 125k
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PROPOSED METHOD: DIFFMUSIC DETAILS

—--True DoA
——MUSIC spectrum

0;

w
L

Amplitude
N

T N

-550 -525 -500 -475 -450 -425 -400 -375
Angle [°]

1
1
1
1
1
1
t
1
1
1
\
1
1
1
1
1
1

For each peak, estimate the DoA:

Select neighbor angles through windowing:
Convex combination: V0 (X|() exists — differentiable.

mask
ei
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PROPOSED METHOD: DIFFMUSIC DETAILS

—--True DoA
——MUSIC spectrum

0;

w
L

1
1
1
1
1
1
t
1
1
1
I

Amplitude
N

1N

-550 -525 -500 -475 -450 -425 -400 -375
Angle [°]

S g

Update the array parameters: { < ¢ — uV¢L (0, 0 (X]C))
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PROPOSED METHOD: LOSS FUNCTIONS

—--True DoA
——MUSIC spectrum

w
L

Amplitude

-550 -525 -500 -475 -450 -425 -400 -375
Angle [°]

How to design task-adapted loss functions to learn ¢?
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PROPOSED METHOD: LOSS FUNCTIONS

—--True DoA
——MUSIC spectrum

w
L

Amplitude

-550 -525 -500 -475 -450 -425 -400 -375

Angle [°]
Minimize the estimation error: RMSPE
1 1 . 2
Lonp = — i *H d7r<9—P0X )H 3
SLO = 777 > glelg\/M mo (XI9)]|, (3)
0, X)eT
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PROPOSED METHOD: LOSS FUNCTIONS

—--True DoA
——MUSIC spectrum

w
L

Amplitude

-550 -525 -500 -475 -450 -425 -400 -375
Angle [°]

Maximize spectrum amplitude at true DoA locations:

Lsi,p = —’71.’ > ) Puusic (6i[€) (3)

(0,X)eT 1

CHATELIER et al. Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays 10/15



PROPOSED METHOD: LOSS FUNCTIONS

CHATELIER et al.

0

w

1
1
1
1
1
1
t
1
1
1

;

Amplitude
N

04 1

—--True DoA
——MUSIC spectrum

-550 -525 -500 -475 450
Angle [°]

Requires a-priori knowledge of the true DoAs!

Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays
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PROPOSED METHOD: LOSS FUNCTIONS

—--True DoA
——MUSIC spectrum

w
L

Amplitude

-55.0 =525 -50.0 -47.5 —45.0 -425 —40.0 =375
Angle [°]

Unsupervised learning: maximize spectrum sharpness within the chosen angular
window (Jain’s index based)

Luyr, = ’71. > ;3 (PMUSIC (9?1%1( (X[¢) |C>) (3)

XeT
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PROPOSED METHOD: LOSS FUNCTIONS

mask T mask
07 softmax | Pyusic | 01

)

Lsv.p Ly,
r MUSIC MUSIC
— H
XHx = UAU pectrum [Plpeak-finding

O (kEvD) Lut, O (N?Ny) O (Fpeak)

Lsr,p: O (N?Ny)

Lspo: O (N?M)

CHATELIER et al.

T
(05{}"‘5") softmax (PMUSIC (0']\“4&51‘

)

O (Numasi M)
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EXPERIMENTAL RESULTS: NV = 16, M = 5, HIGH HWIS

—— Nominal — Lsrp — Lu
—— Physical Lsip

GERRG e O (PO BB

CeERGe O (PG GO
GRG0 O (RO GG
ciciciciciciclciclclclclelerele

0 2 4 6

8 10 12 14 16
x[3/2]

The proposed method learns the impairments
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EXPERIMENTAL RESULTS: NV = 16, M = 5, HIGH HWIS

184 ‘\ =¥~ M nominal
\\\ ~¥- dM physical
16 AN H M L

dM £SL, P

0 ;) 10 1'5 20 25 30
SNR (dB)

The proposed method performs well under noise

CHATELIER et al.

Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays

13/15



EXPERIMENTAL RESULTS: PERFORMANCE AGAINST BASELINES

Baselines LsL,0 LsL,p Ly,
M (nom.) M (phys.) dM (phys.) SubspaceNet M dm M dm M dm
M =1 2.425 0.014 0.013 0.098 0.019 0.015 0.013 0.013 1.339 1.310
RMSPE (°)
M =5 9.976 4.358 4.275 16.123 5.371 5.178 4.325 4.209 4.834 4.731

Baseline comparisons

The proposed method outperforms classical MUSIC and SubspaceNet
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CONCLUSION

Contributions:

MUSIC can be modified to be differentiable
HWIs can be learned while performing DoA estimation
Better results than MUSIC with unknown impairments
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CONCLUSION

Contributions:
MUSIC can be modified to be differentiable
HWIs can be learned while performing DoA estimation
Better results than MUSIC with unknown impairments

Future work:
Extend the method to coherent sources — spatial augmentation method
Extend the method to near-field — new dictionary expression
Combine with SubspaceNet — learn both the surrogate covariance matrix and the
array parameters
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THANKS!
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