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Evolution of telecom. systems

4G 5G 6G 7

N

A few antennas > 10 antennas > 100 antennas

The dimension of channels increases J

e Consequences:
® Channels are more and more difficult to estimate
® Channels contain more and more information
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e Typical data processing setting:
* We observe a large number of correlated variables, explained by a small number of
independent factors.

May 30, 2023 Public Distribution 2/15




k com [IIETR &4 Model-based Al

e Typical data processing setting:
* We observe a large number of correlated variables, explained by a small number of
independent factors.

There are two complementary approaches to handle this situation:

May 30, 2023 Public Distribution 2/15




k com [IIETR &4 Model-based Al

e Typical data processing setting:
* We observe a large number of correlated variables, explained by a small number of
independent factors.
There are two complementary approaches to handle this situation:

¢ Signal processing
* Model based (analytical description of
the manifold)
® Large bias
® | ow complexity

May 30, 2023 Public Distribution 2/15




k com [IIETR &4 Model-based Al

e Typical data processing setting:

* We observe a large number of correlated variables, explained by a small number of
independent factors.

There are two complementary approaches to handle this situation:

¢ Signal processing ¢ Machine learning/Artificial
* Model based (analytical description of intelligence
the manifold) * Data based (sampling of the manifold)
® |arge bias ® |ow bias
® | ow complexity ® High complexity
May 30, 2023 Public Distribution 2/15




k com [IIETR &4 Model-based Al

e Typical data processing setting:

* We observe a large number of correlated variables, explained by a small number of
independent factors.

There are two complementary approaches to handle this situation:

¢ Signal processing ¢ Machine learning/Artificial
* Model based (analytical description of intelligence
the manifold) * Data based (sampling of the manifold)
® Large bias ® Low bias
® |ow complexity * High complexity
Hybrid approach: Model-based Al
Use models to structure, initialize and train learning methods J

May 30, 2023 Public Distribution 2/15




k com [IIETR &4 Model-based Al

e Typical data processing setting:

* We observe a large number of correlated variables, explained by a small number of
independent factors.

There are two complementary approaches to handle this situation:

¢ Signal processing ¢ Machine learning/Artificial
* Model based (analytical description of intelligence
the manifold) * Data based (sampling of the manifold)
® Large bias ® Low bias
® |ow complexity * High complexity
Hybrid approach: Model-based Al
Use models to structure, initialize and train learning methods J

e Make models more flexible: reduce bias of signal processing methods

May 30, 2023 Public Distribution 2/15




k com [IIETR &4 Model-based Al

e Typical data processing setting:

* We observe a large number of correlated variables, explained by a small number of
independent factors.

There are two complementary approaches to handle this situation:

¢ Signal processing ¢ Machine learning/Artificial
* Model based (analytical description of intelligence
the manifold) * Data based (sampling of the manifold)
® Large bias ® Low bias
® |ow complexity * High complexity
Hybrid approach: Model-based Al
Use models to structure, initialize and train learning methods J

e Make models more flexible: reduce bias of signal processing methods
e Guide machine learning methods: reduce their complexity
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Resilient channel estimation
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e Orthogonal pilot sequences: si’s; = §; ;
e Signal due to the k-th UE: Q; = hys!

K
e Full observation atthe BS: Q = >° Qx + W
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e Orthogonal pilot sequences: si’s; = §; ;
e Signal due to the k-th UE: Q; = hys!
K
e Full observation atthe BS: Q = >° Qx + W
k=1
e LS estimate: x; = Qs; =h; +n e CV
How to denoise the channels ? J
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SU-MIMO Physical model:

Plane wave assumption:
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* The BS has noisy estimates of the channels: x =h + n, n ~ CN (0, %1d)
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SU-MIMO Physical model: SU-SISO-OFDM  Physical model:
Plane wave assumption: - h; = Bgze—i2nfiT
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* The BS has noisy estimates of the channels: x =h + n, n ~ CN (0, %1d)

The physical model allows to denoise. J
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* The physical model can’t be perfectly known:
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* The physical model can’t be perfectly known:
® Plane wave assumption — Only good for large distances
* Antenna positions and gains are not exactly known, same for subcarriers frequencies.
¢ Impact on channel denoising:
SNR loss in dB

Uncertainty on locations

0.0 0.03 0.06 0.09 0.12 0.15 0.18 021 0.24 027 03

Uncertainty on gains

How to counter this performance loss ? Use of a neural network
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* Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding’
approach.

Balatsoukas-Stimming and Studer, “Deep Unfolding for Communications Systems: A Survey and Some New
Directions”.
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mpNet presentation

* Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding’

approach.

® MP algorithm (one iteration):

1. Correlation : T x
2. Argmax search : i* = arg max; |} x|
3. Projection : h = ¢, 9 x

°* mpNet:

X=h+n—

WH

HT,

—|

Balatsoukas-Stimming and Studer, “Deep Unfolding for Communications Systems: A Survey and Some New

Directions”.
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* Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding’
approach.

® MP algorithm (one iteration): °* mpNet:

1. Correlation : T x
2. Argmax search : i* = arg max; |} x| x=h+n—WH{—-HT{—~Wrh
3. Projection : h = 4, ¢ x

* Model-based Al: MIMO channel estimation®, SISO-OFDM (this paper),
MIMO-ISAC?, MIMO-OFDM-ISAC-Multi-target®.

Balatsoukas-Stimming and Studer, “Deep Unfolding for Communications Systems: A Survey and Some New
Directions”.

2Yassine and Le Magoarou, “mpNet: variable depth unfolded neural network for massive MIMO channel estimation”.
3Mateos-Ramos et al., “Model-Driven End-to-End Learning for Integrated Sensing and Communication”.
“Mateos-Ramos et al., “Model-Driven End-to-End Learning for Multi-Target Integrated Sensing and Communication”.
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E com IETR & Contributions

e Constrained dictionaries:

® Reducing the number of learning parameters
* Without harming the model learning capabilities

e Hierarchical atom search:

* Exhaustive search over large dictionaries is computationally heavy
® Speed-up the search of the most-correlated atom
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¢ High number of learning parameters: long training time. How to reduce the learning
parameters number ?
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¢ High number of learning parameters: long training time. How to reduce the learning
parameters number ?
* Non-constrained vs. constrained dictionary:
W1 .1 et WA
W=| - |ech (1)
WN,1 ot WN A
gre~i2m(h=33f)n ei2m(f1=50f)7a
o

W = ; : ech4 2)
gNe—j%r(fN%af)n gNe—j2w(fN+g6f)m
® From 2N A parameters to 2N + 1 parameters to learn
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¢ High number of learning parameters: long training time. How to reduce the learning
parameters number ?
* Non-constrained vs. constrained dictionary:

Wil ottt WiA
W=|: - |ech4 (1)
WN1 cc WNA
gle—jzfr(fl—%af)n gle—jzw(fl—%ﬁf)m
W= : : e CNxA )
gNe—j%r(fN%af)n gNe—j2w(fN+g6f)m

® From 2N A parameters to 2N + 1 parameters to learn
° Example: N = 256 subcarriers and A = 990 atoms =- 506, 880 to 513 parameters
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¢ High number of learning parameters: long training time. How to reduce the learning
parameters number ?
* Non-constrained vs. constrained dictionary:

W1 .1 et WA
W= | : .. |ech4 (1)
WN,1 t° WN A
gre~i2m(h=33f)n gre~i2m(fi=30f)ma
\?V = : . : c chvx4 2)
gNe—j%r(fN%éf)n gNe—j2w(fN+g6f)m

® From 2N A parameters to 2N + 1 parameters to learn
° Example: N = 256 subcarriers and A = 990 atoms =- 506, 880 to 513 parameters

Learning parameter number is independent of the number of atoms |
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May 30, 2023 Public Distribution 11/15




E com IETR &4 Hierarchical atom search

e Currently, correlation of the whole dictionary with the residual and argmax search.
® Computationally intensive: How to speed up the process ?

e New idea: Use a hierarchical approach.

May 30, 2023 Public Distribution 11/15




k com [IIETR &4 Hierarchical atom search

e Currently, correlation of the whole dictionary with the residual and argmax search.
® Computationally intensive: How to speed up the process ?

* New idea: Use a hierarchical approach.
A atoms Classical approach:

e 1 step
-
f— f t e A correlations

May 30, 2023 Public Distribution 11/15




k com [IIETR &4 Hierarchical atom search

e Currently, correlation of the whole dictionary with the residual and argmax search.
® Computationally intensive: How to speed up the process ?

e New idea: Use a hierarchical approach.

A atoms

May 30, 2023 Public Distribution 11/15




k com [IIETR &4 Hierarchical atom search

e Currently, correlation of the whole dictionary with the residual and argmax search.
® Computationally intensive: How to speed up the process ?

e New idea: Use a hierarchical approach.

A atoms
e :
Step 1. | » } - >
——— ——
Step 21 |—m——m— ; I

(log, (4) = 1)
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e Currently, correlation of the whole dictionary with the residual and argmax search.
® Computationally intensive: How to speed up the process ?

e New idea: Use a hierarchical approach.

A atoms
.
—
Step 1. | - ; - ; I
—— ——
Step 2: - " . T
(hmz(?}—n — ‘
——
Step 3: | ; ' ; “

(log, (4))
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e Currently, correlation of the whole dictionary with the residual and argmax search.
® Computationally intensive: How to speed up the process ?

e New idea: Use a hierarchical approach.

A atoms
o :
Step 1: | = " o — i .
P : i Hierarchical approach:
—— ——
e log, (A) steps
Step 2: . - ‘ - g5 (4) P
(log, (4) — 1) .
e 2log, (A) correlations
Step 3: | ! ! — g

(log, (4))
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e Currently, correlation of the whole dictionary with the residual and argmax search.
® Computationally intensive: How to speed up the process ?

e New idea: Use a hierarchical approach.

A atoms Classical approach:
e 1 step

‘ ‘ - e A correlations

Step 1:  } .‘ “ - z
v ‘ - . i Hierarchical approach:
———
Step 2 m oz e log, (A) steps
(log, (4) ~ 1) .
—— e 2log, (A) correlations
Step 3: | ,‘ “ “ - v
(g, (4)) :
H H - - A
Correlation number is divided by 5Tomy(A) J
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Empirical results
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¢ DeepMIMO configuration

° f() = 3.4GHz BS-UE position
* BW = 50MHz

°® N = 256 subcarriers 500
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¢ DeepMIMO configuration

° fO = 3.4GHz BS-UE position
* BW = 50MHz

°® N = 256 subcarriers 500

[ ]

Variable SNR;,

700

600

* Imperfection models:
* SCO: fi = f; +idf
* Gain imperfection: g; = g + ng,, ng, ~ N (0,02)

y axis (m)

500

¢ Online (minibatch) learning

® 10 channels per batch
® 2000 test channels x axis (m)

300
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* DeepMIMO channels @3.4GHz, N = 256 subcarriers
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e Contributions:

® Sample complexity reduction: constrained dictionaries
* Time complexity reduction: hierarchical search

e Link to paper: https://arxiv.org/pdf/2210.06588.pdf or QR-code:

[=] e =]
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https://arxiv.org/pdf/2210.06588.pdf

Thank you!
Have you got any questions?



Thanks



