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e Typical data processing setting:

* We observe a large number of correlated variables, explained by a small number of
independent factors.

There are two complementary approaches to handle this situation:

¢ Signal processing e ML/AI
® Model based ¢ Data based
® Large bias ® Low bias
® |ow complexity * High complexity
Hybrid approach: Model-based Al
Use models to structure, initialize and train learning methods J

* Make models more flexible: reduce bias of signal processing methods
e Guide machine learning methods: reduce their complexity
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representation of h (x)

e Goal: learn
fg: RQ — C

x — h(x),

"Hornik, Stinchcombe, and White, “Multilayer feedforward networks are universal approximators”.
2Cybenko, “Approximation by superpositions of a sigmoidal function”.

Public Distribution 3/14



k com [I[ETR == Location-to-channel mapping

* How to learn the location-to-channel mapping ?

¢ Use of the Implicit Neural Representation (INR) concept:
* Neural networks are universal function approximators

® Using x, one can design and train a neural network in a supervised manner to learn a
representation of h (x)

e Goal: learn
fg: RQ — C
x — h(x),

How to efficiently learn fy (x) ? J
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"Rahaman et al., “On the spectral bias of neural networks”.
2Cao et al., “Towards Understanding the Spectral Bias of Deep Learning”.
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* Classical architecture (MLPs) are biased towards learning low frequency content:?

Z || AR E 4)

X — Xl”2

¢ High frequency spatial dependence due to the exponential argument: small change
in x leads to a huge change in h (x) — on the order of the wavelength

How to learn fy (x) without suffering from the spectral bias ? ]

"Rahaman et al., “On the spectral bias of neural networks”.
2Cao et al., “Towards Understanding the Spectral Bias of Deep Learning”.
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¢ Derive a model-based architecture for the location-to-channel mapping
learning
* Where the model does not have to learn high frequency spatial content

e Show that this model-based approach overcomes the spectral bias, and successfully
learns the location-to-channel mapping
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e The mapping is hard to learn due to the high frequency spatial content

e |dea: split high frequency from low frequency spatial content with a Taylor
expansion

* Around a reference point x,, € R?:

1% = xilly == (1% — X1[l5 + U, ) - (X — Xy) (5)
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e The mapping is hard to learn due to the high frequency spatial content
e |dea: split high frequency from low frequency spatial content with a Taylor
expansion

* Around a reference point x,, € R?:

1% = xully = (1% = Xl + W, —x) - (X = %) (5)
e This yields:
Lp .Bl j%’(u(xr—x )'xT .o
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e The mapping is hard to learn due to the high frequency spatial content
e |dea: split high frequency from low frequency spatial content with a Taylor
expansion

* Around a reference point x,, € R?:

1% = xully = (1% = Xl + W, —x) - (X = %) (5)
e This yields:
Lp B j%’(u(xr—x )'xT .o
h (X) ~ O[le] lhl (XT‘) € ! e*JQTu(xT_xl)'x (6)
=1 14 Ux,—x)) (x — %)
% — il
Slowlﬁarying Fastlynrying
h (x) is locally approximated as a linear combination of planar wavefronts J
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* One needs a set of spatial frequencies per hexagon:

W (x)={i(x)}2, = {e—jki'x}il: dictionary containing well-chosen planar wavefronts
® Can be constructed by sampling the unit circle with D spatial frequencies
* w(x) € CP: location-dependent activation vector

D
vx € R?, h(x) ~ Z w; (x) 15 (x), (7)

=1
with [[w (x)[y =
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* One needs a set of spatial frequencies per hexagon:

W (x)={i(x)}2, = {e—jkf?'x}il: dictionary containing well-chosen planar wavefronts
® Can be constructed by sampling the unit circle with D spatial frequencies
* w(x) € CP: location-dependent activation vector

The local planar approximation becomes global with a well-chosen dictionary J
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kL com [IETR .= Neural architecture

* Main idea: for a given input location x € R?

* From fixed spatial frequencies {k;}”, compute Fourier features {e ki x}
* Compute the associated complex weights w (x), with the sparsity constramt

L W (X)

FCc »ReLUc ReLU¢ I

2 5T, T =T, To—D

softmaxc
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¢ Channel generation: ¢ Locations generation:
* fo=3.5GHz ® 10m by 10m square scene
® Synthetic, with hand-placed virtual ® Train/test locations randomly dropped
sources in the scene with a certain spatial
® Ray-tracing (Sionna) in Paris density

® Evaluation locations: /4 uniform grid
¢ Train loss:

L=E||fo(x) - h (3] x DR, (8)

with D: batch locations set
e Evaluation metric:

2
NMSE = 101log;, (“h<x>—f9§x>”2) xcECR? (9)
1A ()13

with £: evaluation locations set
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1. x —FC [+ReLUc{ FC (+ReLUc{ FC > h (x)

D—1
e 1. MLP, 2. RFF, 3. RFF lin.

Public Distribution 10/14




kL com IETR - e Results: scene reconstruction

* Synthetic channels, L,, = 6 propagation paths
e Train loc. density: 100locs./m? ~ 0.7 locs./\?

Public Distribution 11/14



kL com [IETR .= Results: scene reconstruction

* Synthetic channels, L,, = 6 propagation paths
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MLP  RFF RFFlin. Proposed
Params. 16.8M 33.1M 4k 0.5M
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¢ Ray-tracing channels, L, = 11 propagation paths
e Train loc. density: 150locs./m? ~ 1.1 locs./\?
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kL com [IETR .= Results: scene reconstruction

e Synthetic channels, variable training loc. density, variable propagation path number
e For each point: 100 training with random virtual sources

T
205 -@®- RFFIlin.:L,=1
I RFF lin.:L, =3
| RFF lin.:L, =6
10 A
-@- RFFlin.:L,=12
‘t& I —@— MB:L,=1
>
o] \\:-‘:P-'—‘ _______ a— — MB:L, =3
g e T £ e - MB:L, =6
e —e— MB:L,=12
v -104
=
=
—201
density
—301 I
o
v os 1.0 1.5 2.0

Loc. density (locs./A?)
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kL com [IETR .= Conclusion

e Contributions:

* Derive a model-based neural network to learn the location-to-channel mapping
¢ Show that the proposed model-based architecture allows to overcome the spectral bias
* Better performance than baselines, with less training parameters

e Future work:
® Adapt the architecture to a more realistic scenario: multi-antenna/multicarrier

e Link to paper: https://arxiv.org/pdf/2308.14370.pdf
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