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• Classical beamforming methods rely on the full CSI knowledge: H ∈ CD×K
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TOWARDS TASK-BASED CSI COMPRESSION

• Is it necessary to reconstruct the full CSI from its compressed version?

• CSI is mainly used for beamforming:

Is it possible to decode a beamformingmatrix from the compressed CSI?
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CONTRIBUTIONS

• Use of channel charting for task-based CSI compression

• Heuristic task-based learning strategy

• Learnable parameter optimization
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CHANNEL CHARTING AS AN ENCODING FUNCTION

• Channel charting: dimensionality reduction method that preserves local neighborhoods

• Channel hi ∈ CD

• Pseudo-loc. zi = E (hi) ∈ Rd,
d ≪ D

• CC objective:
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PROPOSED APPROACH

• System model

• L is minimized when v → hejϕ/ ∥h∥2
• After denormalization, v is an imperfect

channel estimate, that can be used in
linear precoders
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ENCODER ARCHITECTURE

• Architecture presented in1,2,3

• D = {hi}Nc
i=1 and Z = {zi}Nc

i=1 are initialized through the ISOMAP algorithm
• zj can be seen as a wisely chosen convex combination of calibration chart locations

1Le Magoarou et al., “Channel charting based beamforming”.
2Yassine, Le Magoarou, et al., “Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly

channel charting”.
3Yassine, Chatelier, et al., “Model-Based Deep Learning for Beam Prediction Based on a Channel Chart”.
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DECODER ARCHITECTURE

• RFF: helps to learn fast variations in the chart-location-to-precoder mapping

• fk =

[
cos (2πFzk)
sin (2πFzk)

]
, F ∼ N

(
0F , σ

2
F IdF

)
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LEARNABLE PARAMETER OPTIMIZATION

• Main parameter complexity comes from D ∈ CD×Nc in the encoder

• Nc needs to be high to have a good init. with ISOMAP, D = NaNs

• Nc = 5k, D = 1024 ⇒ D ×Nc ≃ 5M complex params.
• Use the subsampling strategy of :

• Discard channels that produces too similar chart locations, i.e. solve:

min max
(hi,hj)∈D̃

sim (hi,hj) , (4)
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min max
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EXPERIMENTS: DATASETS AND METRICS

• Two scenes:

• DeepMIMO: urban canyon, 3.5GHz
• Sionna: Paris, 28GHz

• Radio parameters:

• BS with 8x8 UPA ⇒ Na = 64
• Ns = 16 subcs. over 20MHz
• Mono-ant. UEs
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EXPERIMENTS: DATASETS AND METRICS

• Evaluation metrics:

• Mono-UE scenario, squared-cosine similarity:

ρk =

∣∣vH
k hk

∣∣2
∥vk∥22 ∥hk∥22

, (6)

vk = (D1 ◦ E) (hk).
• Multi-UE scenario, ergodic sum-rate:

◦
R =

1

B

B∑
b=1

∑
k

log2

1 +

∣∣∣hH
k,bwk,b

∣∣∣2
σ2
k,b +

∑
j ̸=k

∣∣∣hH
k,bwj,b

∣∣∣2
 , (7)

UE set partition into B groups of K UEs. Wb = D2 ◦
(
{vk,b}Kk=1

)
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EXPERIMENTS: PERFORMANCE WRT. BASELINES

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

P
{ρ
≤
x
}

Proposed (median = 0.962, mean = 0.843)

Dec. RFF (True locs.) (median = 0.953, mean = 0.824)
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EXPERIMENTS: ENC. LEARNING AND SUBSAMPLING IMPACT

Network a

Params. 101k

Sionna
Median ρ 0.88

Mean ρ 0.79

DeepMIMO
Median ρ 0.91

Mean ρ 0.73

• a. No encoder learning, no subsampling

• c. Encoder learning, subsampling
(Ñ = 100)

• b. Encoder learning, no subsampling
• d. Encoder learning, subsampling

(Ñ = 10)
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EXPERIMENTS: MULTI-UE PERFORMANCE
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CONCLUSION

• Contributions:

• CC can be used as an encoding method in a task-based CSI compression scenario
• Better compression ratios than classical auto-encoders
• Inter-UE interference cancellation without considering it during training

• Future work:

• Power allocation policy learning
• SR-optimization through UE grouping policy learning
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