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Classical beamforming methods rely on the full CSI knowledge: H € CP* K

In FDD systems, how to minimize the CSI reporting overhead?

Classical CSl reporting: CSI compression:

UEs report the full CSI: h € CP UEs report a compressed CSl: z € R?
O (D) complexity BS reconstructs the full CSI from z
O (d) complexity (d < D)

Huge complexity reduction |
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Is it necessary to reconstruct the full CSI from its compressed version?

CSlis mainly used for beamforming:

Is it possible to decode a beamforming matrix from the compressed CSI?
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Use of channel charting for task-based CSI compression
Heuristic task-based learning strategy

Learnable parameter optimization
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CHANNEL CHARTING AS AN ENCODING FUNCTION

- Channel charting: dimensionality reduction method that preserves local neighborhoods

. Channelh; e CP

- Pseudo-loc. z; = & (h;) € RY,
d< D

+ CCobjective:

User spatial positions

User chart positions
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After denormalization, v is an imperfect
(3) channel estimate, that can be used in
linear precoders
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D = {h;}*, and Z = {z;}\°, areinitialized through the ISOMAP algorithm

z; can be seen as a wisely chosen convex combination of calibration chart locations

!Le Magoarou et al., “Channel charting based beamforming”.
2Yassine, Le Magoarou, et al., “Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly

channel charting”.

3Yassine, Chatelier, et al., “Model-Based Deep Learning for Beam Prediction Based on a Channel Chart”.
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Main parameter complexity comes from D € CP*"¢ in the encoder
N, needs to be high to have a good init. with ISOMAP, D = N, N
N. =5k, D =1024 = D x N, ~ 5M complex params.

Use the subsampling strategy of*:
Discard channels that produces too similar chart locations, i.e. solve:

min  max _sim (h;, h;j), (4)
(h;,h,)eD

where sim (h;, h;) is a similarity metric:

| S(hi)Hg(hj)
s (s ) = T Ty :

“*Taner et al., “Channel Charting for Streaming CSI Data”.
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- Two scenes:

- DeepMIMO: urban canyon, 3.5GHz
- Sionna: Paris, 28GHz

- Radio parameters:
- BSwith 88 UPA = N, = 64
+ Ny, = 16 subcs. over 20MHz
« Mono-ant. UEs
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Evaluation metrics:
Mono-UE scenario, squared-cosine similarity:
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EXPERIMENTS: PERFORMANCE WRT. BASELINES
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Network a b c d

Params. 101k 10.3M 306k 121k
Medianp 0.88 0.94 0.94 0.94

Mean p 0.79 0.86 0.88 0.88
Medianp 091 096 0.97 0.96
Mean p 0.73 085 087 0.84

Sionna

DeepMIMO

a. No encoder learning, no subsampling b. Encoder learning, no subsampling

c. Encoder learning, subsampling d. Encoder learning, subsampling
(N =100) (N =10)



EXPERIMENTS: MULTI-UE PERFORMANCE
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CONCLUSION

Contributions:

CC can be used as an encoding method in a task-based CSI compression scenario
Better compression ratios than classical auto-encoders
Inter-UE interference cancellation without considering it during training

Future work:

Power allocation policy learning
SR-optimization through UE grouping policy learning
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