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< CF-Massive MIMO beam allocation >

• In Cell Free Massive MIMO communication systems, with different uplink and downlink
frequencies, how to attribute the best BS beam to a given UE ?
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What happens if the location becomes a
chart location ?
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< Chart locations >

• Locations: GNSS
• Chart/Pseudo-locations: dim. reduction

of the channel
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Contributions
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< Contributions >

• New neural architecture for the pseudo-location to beam mapping

• Assessment of codebook performance versus precoder learning in cell-free
systems
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< Proposed scenario >

• Inference: get uplink channels at BS1
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• Inference: channel charting
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< Proposed scenario >

• Inference: send pseudo-locations to other BSs
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< Proposed scenario >

• Inference: beam selection from pseudo-locations
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< Proposed scenario >

• Training: CC only at BS1, LBBS networks at all BSs
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< Beam allocation complexity >

• Classical approach:

• CC-based approach:

• One BS performs channel estimation
and channel charting

• Then it sends the pseudo-loc. to other
BSs

• Total complexity: O (D +Bd) , d ≪ D
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< Beam allocation complexity >

• Classical approach:

• All BSs perform beam sweeping:
O (BD)

• CC-based approach:

• One BS performs channel estimation
and channel charting

• Then it sends the pseudo-loc. to other
BSs

• Total complexity: O (D +Bd) , d ≪ D

Huge complexity reduction
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< Channel charting procedure >

• Manifold learning methods such as ISOMAP are computationally intensive in out-of-
sample scenarios
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< Channel charting procedure >

• Manifold learning methods such as ISOMAP are computationally intensive in out-of-
sample scenarios → use of the method proposed in1 with a phase insensitive dis-
tance2.

1Yassine et al., “Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting”.
2Le Magoarou, “Efficient Channel Charting via Phase-Insensitive Distance Computation”.
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< Channel charting procedure >

• Manifold learning methods such as ISOMAP are computationally intensive in out-of-
sample scenarios → use of the method proposed in1 with a phase insensitive dis-
tance2.

• z1,j can be seen as a convex combination of the pseudo-locations associated to the
K most correlated channels with h1,j .

1Yassine et al., “Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting”.
2Le Magoarou, “Efficient Channel Charting via Phase-Insensitive Distance Computation”.
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< Neural architectures: classification >

• x =

[
cos (2πBz)
sin (2πBz)

]
,B ∈ RF×d

• B ∼ N
(
0F , σ

2IdF

)
• d = 5, F = 200, T = 64, Nb = 256

• Baseline: 1-NN → the best beam for
a given test pseudo-loc. is the optimal
beam of the closest train pseudo-loc.
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< Experiments: scenes >

• Two different scenes:
• Urban canyon with DeepMIMO3

• Paris, Étoile neighborhood with Sionna4

• Radio parameters:
• 2 BSs: UPA 8x8 ⇒ Na = 64
• 2D-DFT codebook: Nb = 4Na

• UEs: mono-antenna
• Uplink: 3.5GHz
• Downlink: 28GHz
• Multicarrier: 16 subcarriers over 20MHz bandwidth

3Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications”.
4Hoydis et al., “Sionna: An Open-Source Library for Next-Generation Physical Layer Research”.
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< Charting: DeepMIMO scene, d = 5 >

• Neighbours: 5% of dataset size

TW CT KS

0.973 0.929 0.471
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< Charting: Sionna scene, d = 5 >

• Neighbours: 5% of dataset size

TW CT KS

0.960 0.952 0.292

• Chart shape can be explained5

5Yassine et al., Optimizing Multicarrier Multiantenna Systems for LoS Channel Charting.

Public Distribution 12 / 20



< Best beam spatial distribution: BS2 >

• DeepMIMO • Sionna
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< Classification: BS2 >

• Pseudo-locs.

DeepMIMO RFF MLP 1-NN

Top 1 acc. (%) 66.07 56.06 61.40

Top 2 acc. (%) 84.87 76.97 81.31

Top 3 acc. (%) 90.66 85.09 88.77

Sionna RFF MLP 1-NN

Top 1 acc. (%) 66.07 54.07 69.73

Top 2 acc. (%) 75.13 65.00 79.47

Top 3 acc. (%) 78.27 69.07 81.87

• True locs.

DeepMIMO RFF MLP 1-NN

Top 1 acc. (%) 74.53 34.15 71.08

Top 2 acc. (%) 91.21 46.61 88.32

Top 3 acc. (%) 95.77 54.39 94.33

Sionna RFF MLP 1-NN

Top 1 acc. (%) 82.53 42.40 82.07

Top 2 acc. (%) 88.40 49.93 88.27

Top 3 acc. (%) 89.87 53.80 89.87
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< Classification >

• DeepMIMO
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< Time complexity: inference >

• Mean execution time for inference (1.5M pseudo-locs.)

RFF MLP 1-NN (ball-tree) 1-NN (brute force)

Execution time (ns) 602.6 145.8 4928.2 10913.9

• GPU implementation of RFF/MLP: very fast inference times
• Optimized 1-NN is interesting: information in pseudo-locations work well with very

simple ML methods

• When considering online learning, parametric methods (i.e. RFF/MLP) would outper-
form non-parametric methods (i.e. 1-NN) in terms of inference complexity
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< Regression task >

• From a pseudo-location learn a precoder w ∈ CNa

• Pseudo-location based beamforming

• Training loss: correlation-based (between precoder and downlink channel)

L = 1− 1

B

B∑
u=1

∣∣wH
ugu

∣∣2
∥gu∥22

(1)

• Evaluation metric: normalized correlation between precoder and downlink channel:

η =

∣∣wHg
∣∣2

∥g∥22
(2)
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< Classification vs Regression: BS2 >

• DeepMIMO
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< Correlation maps: BS2 >
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< Conclusion >

• Contributions:

• Pseudo-locations can be used to select the best beam at another BS than the one used
for charting.

• Better performance when using RFF networks in the pseudo-location to beam mapping.
• Learning a precoder from pseudo-locations yields better performance than using a 2D-

DFT codebook.
• Information in the chart also works very well with very simple machine learning methods

(1-NN).

• Future work:

• Pseudo-locations have only been obtained under the channel charting point of view.

• Would using an auto-encoders cause a performance drop ?

• End-to-end training for channel charting and neural network.
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Thank you!
Questions?



< Correlation maps: BS2 >
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Thanks


	Appendix

