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L com [IETR Aumee A2z CF-Massive MIMO beam allocation

¢ In Cell Free Massive MIMO communication systems, with different uplink and downlink
frequencies, how to attribute the best BS beam to a given UE ?

82,2

g1,1 ecpP
9 832

X
X1 € m
h3,3 BS;
X3

BS;

Public Distribution 1/20




E com IETR Aumes A2 s CF-Massive MIMO beam allocation
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CF-Massive MIMO beam allocation

Beam sweeping Location based
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Beam sweeping ML-aided location based

N oD beam allocation
b= ( ) Location to beam mapping
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What happens if the location becomes a
chart location ?
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e | ocations: GNSS

e Chart/Pseudo-locations: dim. reduction
of the channel
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Contributions
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* New neural architecture for the pseudo-location to beam mapping
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* New neural architecture for the pseudo-location to beam mapping

¢ Assessment of codebook performance versus precoder learning in cell-free
systems
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BS,
*
Xk

BS;

* Inference: get uplink channels at BS1
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CC: hl,k € cP - Z € R4
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¢ Inference: channel charting
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CC: hl,k € cP - Zi € R4 z,
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* Inference: send pseudo-locations to other BSs
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CC:hyy, € CP — z, e R? ” LBBS: z; — i3
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e Inference: beam selection from pseudo-locations
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CC model calibration LBBS net. 2
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e Training: CC only at BS1, LBBS networks at all BSs
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¢ Classical approach:
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¢ Classical approach: ¢ CC-based approach
N, 7 N LBBS net.
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° All BSs perform beam sweeping: * One BS performs channel estimation
O(BD) and channel charting
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E com [IIETR A A7 - Beam allocation complexity

¢ Classical approach: ¢ CC-based approach
N, 7 e LBBS net.
\
BS,
-
UE
BS;
® Al BSs perform beam sweeping: * One BS performs channel estimation
O (BD) and channel charting
® Then it sends the pseudo-loc. to other
BSs

e Total complexity: O (D + Bd),d < D
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¢ Classical approach: ¢ CC-based approach
N, 7 e LBBS net.
é‘g \
BS,
-
UE
BS;
® Al BSs perform beam sweeping: * One BS performs channel estimation
O (BD) and channel charting
® Then it sends the pseudo-loc. to other
BSs

e Total complexity: O (D + Bd),d < D
Huge complexity reduction J
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e Manifold learning methods such as ISOMAP are computationally intensive in out-of-
sample scenarios

Public Distribution 8/20



E com [IETR Aumee A2 Channel charting procedure

e Manifold learning methods such as ISOMAP are computationally intensive in out-of-
sample scenarios — use of the method proposed in' with a phase insensitive dis-
tance®.

Yassine et al., “Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting”.
2e Magoarou, “Efficient Channel Charting via Phase-Insensitive Distance Computation”.
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e Manifold learning methods such as ISOMAP are computationally intensive in out-of-
sample scenarios — use of the method proposed in' with a phase insensitive dis-
tance®.

N ISOMAP N
{hl,n}n=1 > {Zl,n}n=1

(D 2 (hyy---hyy) € (cNaxN> (Z A (211 21n) € Cde)

Yassine et al., “Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting”.
2e Magoarou, “Efficient Channel Charting via Phase-Insensitive Distance Computation”.
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e Manifold learning methods such as 1soMaP are computationally intensive in out-of-
sample scenarios — use of the method proposed in' with a phase insensitive dis-

tance?.
N ISOMAP N
{hl,n}n=1 > {zl,n}nzl
(D 2 (hy-hiy) € CNaxN) (z 2 (g, 7N) € Cd“")
Out-of-sample channel: hy ;
hy ;- D (— || = HTx— T, | Z [>2%1;

* z;; can be seen as a convex combination of the pseudo-locations associated to the
K most correlated channels with h ;.

Yassine et al., “Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting”.
2e Magoarou, “Efficient Channel Charting via Phase-Insensitive Distance Computation”.
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z € RY ReLU ReLU SO&max|_, peRM Trainiug loss: multi-class cross entropy
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2D T ToT TN, L= — Zpu 1og, (Pu)
ze ]R"RoLURcLURcLU softmax}—'ﬁe RN Py € R (pu)j =1« =j for UE u.
d—2D 2D T ToT TN,

Public Distribution 9/20



E com IETR Aumes A2 s Neural architectures: classification

RFF zeR? ReLU ReLU so&max|—» peRM Training loss: multi-class cross entropy
B

2D =T T—T TN, L=— Z pg‘ 10g2 (f)u)
u=1
MLP ze]R"RcLURcLURcLU softmax}—‘ﬁ)€RN" pu € RN, (pu)j =1« =j for UE u.
d—2D 2D =T TT T N,

cos (27Bz)
o x —

sin (2rBz)
* B~ N (0p,0%IdF)
® d=5,F =200,T =64, N, = 256
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Neural architectures: classification

RFF zc R ReLU ReLU SO&HMX|—' p eRM Training loss: multi-class cross entropy

B
2D =T T>T TN,

L=—73 p,log, (Pu)

u=1
MLP z € R"ROLURCLURcLU softmax}—‘ﬁe RNe Pu € RN", (p“)g =1l = _] for UE u.

d— 2D 2D =T T—-T T—= N,

_ |cos (2rBz) Fxd
tx= [sin (27rBz)] BER™ e Baseline: 1-NN — the best beam for
* B~ N (0p,0%Idp) a given test pseudo-loc. is the optimal

beam of the closest train pseudo-loc.
® d=25,F =200,T =64, N, = 256
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e Two different scenes:

* Urban canyon with DeepMIMO®
* Paris, Etoile neighborhood with Sionna*

3Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications”.
“Hoydis et al., “Sionna: An Open-Source Library for Next-Generation Physical Layer Research”.
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e Two different scenes:

* Urban canyon with DeepMIMO®
* Paris, Etoile neighborhood with Sionna*

e Radio parameters:

2 BSs: UPA 8x8 = N, = 64

2D-DFT codebook: Ny, = 4N,

UEs: mono-antenna

Uplink: 3.5GHz

Downlink: 28GHz

Multicarrier: 16 subcarriers over 20MHz bandwidth

3Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications”.
“Hoydis et al., “Sionna: An Open-Source Library for Next-Generation Physical Layer Research”.
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User spatial positions
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User spatial positions

400

IS
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e Neighbours: 5% of dataset size
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e Chart shape can be explained®

5Yassine et al., Optimizing Multicarrier Multiantenna Systems for LoS Channel Charting.
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¢ DeepMIMO e Sionna
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® Pseudo-locs.

DeepMIMO RFF MLP  1-NN
Top 1 acc. (%) 66.07 56.06 61.40
Top 2 acc. (%) 84.87 76.97 81.31

Top 3acc. (%) 90.66 85.09 88.77
Sionna RFF MLP 1-NN

Top 1acc. (%) 66.07 54.07 69.73
Top 2 acc. (%) 75.13  65.00 179.47
Top 3acc. (%) 7827 69.07 81.87

Public Distribution 14 /20



L com IETR Avmes A2 s Classification: BS2

¢ Pseudo-locs. e True locs.
DeepMIMO RFF MLP 1-NN DeepMIMO RFF MLP 1-NN
Top 1acc. (%) 66.07 56.06 61.40 Top 1acc. (%) 74.53 34.15 71.08
Top 2 acc. (%) 84.87 76.97 81.31 Top 2acc. (%) 91.21  46.61  88.32
Top 3 acc. (%) 90.66 85.09 88.77 Top 3 acc. (%) 95.77 54.39  94.33
Sionna RFF MLP 1-NN Sionna RFF MLP 1-NN
Top 1acc. (%) 66.07 54.07 69.73 Top 1acc. (%) 82.53 4240 82.07
Top 2 acc. (%) 75.13 65.00 179.47 Top 2 acc. (%) 88.40 49.93  88.27
Top 3 acc. (%) 78.27 69.07 81.87 Top 3 acc. (%) 89.87 53.80 89.87
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¢ DeepMIMO e Sionna
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e Mean execution time for inference (1.5M pseudo-locs.)

RFF  MLP 1-NN (ball-tree) 1-NN (brute force)
Execution time (ns) 602.6 145.8 4928.2 10913.9
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E com [IIETR Aummee A2 s Time complexity: inference

e Mean execution time for inference (1.5M pseudo-locs.)

RFF  MLP 1-NN (ball-tree) 1-NN (brute force)
Execution time (ns) 602.6 145.8 4928.2 10913.9

e GPU implementation of RFF/MLP: very fast inference times

e Optimized 1-NN is interesting: information in pseudo-locations work well with very
simple ML methods

¢ When considering online learning, parametric methods (i.e. RFF/MLP) would outper-
form non-parametric methods (i.e. 1-NN) in terms of inference complexity
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* From a pseudo-location learn a precoder w € CMa
* Pseudo-location based beamforming
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* From a pseudo-location learn a precoder w € CMa
* Pseudo-location based beamforming

e Training loss: correlation-based (between precoder and downlink channel)

2
L=1—-=) ——— (1)
gl
e Evaluation metric: normalized correlation between precoder and downlink channel:

w'g
2
Isll5
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¢ DeepMIMO e Sionna
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com [ETR Avmme A2 g Correlation maps:

GT (classif.) RFF (classif.) MLP (classif.) RFF (regr.) MLP (regr.)
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L com [IETR Aumeme A2 Conclusion

e Contributions:
® Pseudo-locations can be used to select the best beam at another BS than the one used
for charting.
¢ Better performance when using RFF networks in the pseudo-location to beam mapping.

® Learning a precoder from pseudo-locations yields better performance than using a 2D-
DFT codebook.

® Information in the chart also works very well with very simple machine learning methods
(1-NN).

e Future work:

® Pseudo-locations have only been obtained under the channel charting point of view.
* Would using an auto-encoders cause a performance drop ?
¢ End-to-end training for channel charting and neural network.
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E com [IETR Aumee A7 Correlation maps: BS2
GT (classif.) RFF (classif.) MLP (classif.) RFF (regr.) MLP (regr.)
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