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LOCATION-TO-CHANNEL MAPPING

• The wireless propagation channel characterizes how the propagation environment
affects transmitted electromagnetic waves
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LOCATION-TO-CHANNEL MAPPING

• Channel impulse response (x ∈ R3: receiver location):

h (τ,x) =

Lp∑
l=1

γl (x) δ (τ − τl (x)) (1)

• Channel frequency response (fk: considered frequency):

(2)

• How to learn this mapping in a system with Na antennas operating on Ns frequencies?
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TOWARDS INR

• Use of the Implicit Neural Representation (INR) concept:

• Neural networks are universal function approximators
• Using x, one can design and train a neural network in a supervised manner to learn a

representation of H (x)

• Goal: learn
fθ : R3 −→ CNa×Ns

x −→ H (x)
(4)

How to structure and learn fθ (x)?
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SPECTRAL BIAS

• Classical architecture (MLPs) are biased towards learning low frequency content3,4

h (fk,x) =

Lp∑
l=1

αle
jβl

dl (x)
e
−j 2π

λk
dl(x) (5)

• High frequency spatial dependence due to the exponential argument: small change in x
leads to a huge change in H (x)→ on the order of the wavelength

How to learn fθ (x) without suffering from the spectral bias?

3Rahaman et al., “On the spectral bias of neural networks”.
4Cao et al., “Towards Understanding the Spectral Bias of Deep Learning”.
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MODEL-BASED MACHINE LEARNING
Typical data processing setting:
• We observe a large number of correlated variables, explained by a small number of
independent factors.

• Make models more flexible: reduce bias of signal processing methods
• Guide machine learning methods: reduce their complexity
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• We observe a large number of correlated variables, explained by a small number of
independent factors.

There are two complementary approaches to handle this situation:

• Signal processing
• Model based
• Large bias
• Low complexity

• Machine learning
• Data based
• Low bias
• High complexity

Hybrid approach: Model-based machine learning
Use models to structure, initialize or optimize learning methods

• Make models more flexible: reduce bias of signal processing methods
• Guide machine learning methods: reduce their complexity

Use the physical channel model to structure a neural network that overcomes the
spectral bias
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OVERCOMING THE SPECTRAL BIAS

• Main idea5,6: planar approximation of spherical wavefronts using Taylor expansions

5Chatelier et al., “Model-Based Learning for Location-to-Channel Mapping”.
6Chatelier et al., “Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping”.
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GENERALIZATION

• This results in a sparse recovery problem with a slowly varying coefficients vector w (x):

∀x ∈ R3, H (x) ≃
D∑
i=1

(
w (x)⊙ ψ̃x (x)

)
ψ̃a,iψ̃

T
f ,i (6)

with ∥w (x)∥0 = Lp

• ψ̃a,i and ψ̃f ,i allow antenna and frequency extrapolation

• Alternative formulation:

∀x ∈ R3, vec (H (x)) ≃
(
Ψ̃f (x)⊗ Ψ̃a (x)

)
vec

(
diag

(
w (x)⊙ ψ̃x (x)

))
(7)

with ∥w (x)∥0 = Lp
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MODEL-BASED NEURAL ARCHITECTURE
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MODEL-BASED NEURAL ARCHITECTURE

MB-ML: we used the channel model to structure a neural network
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LEARNING FRAMEWORK

• Scene:
• 10m by 10m square plane
• Uniformly dropped train/test locations
• Performance evaluation on λ/4 uniform

grid (210k locs.)
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RESULTS

• Top row: real part of the reconstructed channels with NMSE in dB (in red)
• Bottom row: 2D Fourier transform of the reconstruction
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POTENTIAL APPLICATIONS

• The objective was to learn:
fθ : R3 −→ CNa×Ns

x −→ H (x)
(8)

• Once trained, this model achieves near-perfect channel reconstruction, at the
sub-wavelength level

• Potential applications include:

• Channel prediction
• Precise localization
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RADIO LOCALIZATION

• Given H (x), how to estimate x?

• Fingerprinting-based localization:

• Estimate x as the position in a dictionary G whose associated channel coefficients
are the most similar with H (x).

• Idea: use the trained fθ to generate channel coefficients at wanted locations to enhance
localization accuracy
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PROPOSED LOCALIZATION METHOD

• Based on grid-search and gradient descent7, using a Frobenius norm similarity measure:

µPS (H (x) , x̃|θ) = ∥H (x)− fθ (x̃)∥F (10)

7Chatelier et al.,Model-based Implicit Neural Representation for sub-wavelength Radio Localization.
Baptiste CHATELIER 12/15



PROPOSED LOCALIZATION METHOD

• How to estimate x?
• Background: ∥H (x)− fθ (x̃)∥F
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PROPOSED LOCALIZATION METHOD

• Generate the global grid GG based on
topological knowledge of the scene

• Using fθ, solve:

x̃i = argmin
x̃∈GG

∥H (x)− fθ (x̃)∥F (10)
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PROPOSED LOCALIZATION METHOD

• Perform N∇ gradient descent steps

• Local minima issue
• Spacing between minima derived from µPS

• Generate circles of radius kλ0, k ∈ N∗

• Generate GC by sampling from the circles
• Using fθ, solve:

x̃c⋆ = argmin
x̃∈GC

∥H (x)− fθ (x̃)∥F (10)
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PROPOSED LOCALIZATION METHOD

• Perform N∇ gradient descent steps

MB-ML: we used the channel model to structure a neural network
and optimize a gradient descent process
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SIMULATION SETUP

• Localization performance evaluated on 10k independent locations within the red plane
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LOCALIZATION PERFORMANCE
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• PI: phase insensitive similarity measure, used during the grid search on the global grid to
mitigate the local minima issue

• Sub-wavelength median localization accuracy for the proposed method (in blue)
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CONCLUSION

• Combining INR and MB-ML allowed us to:

• Learn the location-to-channel mapping and overcome the spectral bias issue
• Optimize a localization method based on the proposed network
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CONCLUSION

• Combining INR and MB-ML allowed us to:
• Learn the location-to-channel mapping and overcome the spectral bias issue
• Optimize a localization method based on the proposed network

• General advantages of MB-ML:
• Increased interpretability
• Reduced complexity
• Often better performance

(Mapping learning) (Localization)
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