LEARNING THE LOCATION-TO-CHANNEL MAPPING

Baptiste CHATELIER" T, Vincent CORLAY#, Matthieu CRUSSIERE', Luc LE MAGOAROU

T Univ Rennes, INSA Rennes, CNRS, IETR-UMR 6164, Rennes, France
I Mitsubishi Electric R&D Centre Europe, Rennes, France

GDR IASIS - Représentations Neuronales Implicites : des NeRF aux PINN

Paris - November 4, 2025

‘ MITSUBISHI ‘
AV N ELECTRIC
Changes for the Better I

CHALMERS

UNIVERSITY OF TECHNOLOGY




LOCATION-TO-CHANNEL MAPPING

The wireless propagation channel characterizes how the propagation environment
affects transmitted electromagnetic waves
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The wireless propagation channel characterizes how the propagation environment
affects transmitted electromagnetic waves
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LOCATION-TO-CHANNEL MAPPING

Channel impulse response (x € R3: receiver location):

LP
h(rx) =Y m(x)d(r—mn(x) (1)
=1
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LOCATION-TO-CHANNEL MAPPING

Channel impulse response (x € R3: receiver location):

Lp
=> n®) (1 -7 (x)) (1)
=1

Channel frequency response (f5: considered frequency):

h (f> %) Z% emi2rfim(x) (2)

- Z Odlelﬁl 27r dl ) (3)

How to learn this mapping in a system with N, antennas operating on N, frequencies?
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Use of the Implicit Neural Representation (INR) concept:
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Use of the Implicit Neural Representation (INR) concept:

Neural networks are universal function approximators*:2
Using x, one can design and train a neural network in a supervised manner to learn a
representation of H (x)

Goal: learn
fg: R?’ — (CN“XNS

x — H (x)

How to structure and learn fy (x)? J

'Hornik, Stinchcombe, and White, “Multilayer feedforward networks are universal approximators”.
2Cybenko, “Approximation by superpositions of a sigmoidal function”.
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SPECTRAL BIAS

Classical architecture (MLPs) are biased towards learning low frequency content®#

*Rahaman et al., “On the spectral bias of neural networks”.

“Cao et al., “Towards Understanding the Spectral Bias of Deep Learning”.
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High frequency spatial dependence due to the exponential argument: small change in x
leads to a huge change in H (x) — on the order of the wavelength
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SPECTRAL BIAS

Classical architecture (MLPs) are biased towards learning low frequency content®#
Ly
ﬁl . 271'
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High frequency spatial dependence due to the exponential argument: small change in x
leads to a huge change in H (x) — on the order of the wavelength

How to learn fy (x) without suffering from the spectral bias?

*Rahaman et al., “On the spectral bias of neural networks”.

“Cao et al., “Towards Understanding the Spectral Bias of Deep Learning”.
Baptiste CHATELIER 3/15



MODEL-BASED MACHINE LEARNING

Typical data processing setting:

We observe a large number of correlated variables, explained by a small number of
independent factors.
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MODEL-BASED MACHINE LEARNING

Typical data processing setting:

We observe a large number of correlated variables, explained by a small number of

independent factors.
There are two complementary approaches to handle this situation:

Signal processing Machine learning
Model based Data based
Large bias Low bias
Low complexity High complexity

Hybrid approach: Model-based machine learning
Use models to structure, initialize or optimize learning methods

Make models more flexible: reduce bias of signal processing methods
Guide machine learning methods: reduce their complexity

Baptiste CHATELIER
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Use the physical channel model to structure a neural network that overcomes the
spectral bias
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OVERCOMING THE SPECTRAL BIAS

Main idea®-®: planar approximation of spherical wavefronts using Taylor expansions

*Chatelier et al., “Model-Based Learning for Location-to-Channel Mapping”.
®Chatelier et al., “Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping”.
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GENERALIZATION

This results in a sparse recovery problem with a slowly varying coefficients vector w (x):
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GENERALIZATION

This results in a sparse recovery problem with a slowly varying coefficients vector w (x):

D
x e R H () 2 Y (W) 09y () Pa bt G
=1
with [[w (x)[|y = Ly

{ﬂa’i and {ﬂf,i allow antenna and frequency extrapolation

Alternative formulation:

vx € R3, vec (H (x)) ~ (\ilf (x) ® ¥, (x)) vec (diag (w (x) ® 1, (x))) (7)
with [[w (x)[|q = Ly
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MODEL-BASED NEURAL ARCHITECTURE

(‘ilf (x)® ¥, (x)) vec (diag (z= (x))) > vec (I:I (x))
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MB-ML: we used the channel model to structure a neural network
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LEARNING FRAMEWORK

+ Scene:
+ 10m by 10m square plane
- Uniformly dropped train/test locations
- Performance evaluation on A/4 uniform
grid (210k locs.)
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RESULTS

- Top row: real part of the reconstructed channels with NMSE in dB (in red)

« Bottom row: 2D Fourier transform of the reconstruction
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POTENTIAL APPLICATIONS

The objective was to learn:
fg: R3 — (CN“XNS
x — H (x)

Once trained, this model achieves near-perfect channel reconstruction, at the
sub-wavelength level

fo can be seen as a generative neural channel model in the considered scene )

Potential applications include:

Channel prediction
Precise localization
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RADIO LOCALIZATION

Given H (x), how to estimate x?

Fingerprinting-based localization:

Estimate x as the position in a dictionary G whose associated channel coefficients
are the most similar with H (x).

x (H (x)) = argmaxsim (H (x) ,H (x)) 9)
xeg
Localization accuracy is limited by the dictionary resolution J

Idea: use the trained fy to generate channel coefficients at wanted locations to enhance
localization accuracy
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PROPOSED LOCALIZATION METHOD
Based on grid-search and gradient descent’, using a Frobenius norm similarity measure:

pes (H (x),x|0) = [[H (x) = fo (%)]|¢ (10)

"Chatelier et al., Model-based Implicit Neural Representation for sub-wavelength Radio Localization.
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PROPOSED LOCALIZATION METHOD

- How to estimate x?
- Background: |[H (x) — fo (X)||¢
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PROPOSED LOCALIZATION METHOD

- Generate the global grid G based on
topological knowledge of the scene

Global grid: O (|Ge| #y,)
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PROPOSED LOCALIZATION METHOD
09l 5z,)

- Generate the global grid G based on
topological knowledge of the scene

Global grid
W

£

« Using fg, solve:

xi = argmin[[H (x) — fo X)[lg ~ (10)

x€G¢
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PROPOSED LOCALIZATION METHOD

- Generate the local grid G| around the obtained
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PROPOSED LOCALIZATION METHOD

- Generate the local grid G| around the obtained
location

Local grid: O (|GL| k¢,)

« Using fg, solve:

Xg = argmin ||H (x) — fo (X)]|¢ (10)

XEGL
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+ Perform Ny gradient descent steps
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PROPOSED LOCALIZATION METHOD

Circles: O (|Gc| k+,)

+ Perform Ny gradient descent steps

+ Local minimaissue

+ Spacing between minima derived from pps
- Generate circles of radius kg, k € N*

Generate Gc by sampling from the circles
+ Using fg, solve:

Xcr = arg Iélin IH (x) — fo (X)||¢ (10)
Xeyc
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PROPOSED LOCALIZATION METHOD

+ Perform Ny gradient descent steps
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MB-ML: we used the channel model to structure a neural network
and optimize a gradient descent process
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SIMULATION SETUP

- Localization performance evaluated on 10k independent locations within the red plane
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LOCALIZATION PERFORMANCE
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Pl: phase insensitive similarity measure, used during the grid search on the global grid to
mitigate the local minima issue

Sub-wavelength median localization accuracy for the proposed method (in blue)
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CONCLUSION

Combining INR and MB-ML allowed us to:

Learn the location-to-channel mapping and overcome the spectral bias issue
Optimize a localization method based on the proposed network

General advantages of MB-ML:
Increased interpretability
Reduced complexity
Often better performance

(Mapping learning) (Localization)
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https://arxiv.org/pdf/2407.07719
https://arxiv.org/pdf/2506.06387
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