LEARNING THE LOCATION-TO-CHANNEL MAPPING

Baptiste CHATELIER^{‡,†}, Vincent CORLAY[‡], Matthieu CRUSSIERE[†], Luc LE MAGOAROU[†]

† Univ Rennes, INSA Rennes, CNRS, IETR-UMR 6164, Rennes, France

† Mitsubishi Electric R&D Centre Europe, Rennes, France

GDR IASIS - Représentations Neuronales Implicites : des NeRF aux PINN

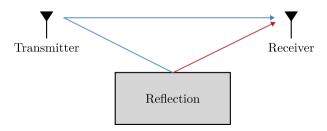
Paris – November 4, 2025

• The wireless propagation channel characterizes how the propagation environment affects transmitted electromagnetic waves

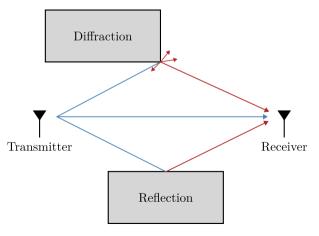
 The wireless propagation channel characterizes how the propagation environment affects transmitted electromagnetic waves

 The wireless propagation channel characterizes how the propagation environment affects transmitted electromagnetic waves

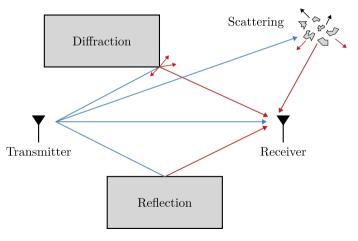
 The wireless propagation channel characterizes how the propagation environment affects transmitted electromagnetic waves



 The wireless propagation channel characterizes how the propagation environment affects transmitted electromagnetic waves



 The wireless propagation channel characterizes how the propagation environment affects transmitted electromagnetic waves



• Channel impulse response ($\mathbf{x} \in \mathbb{R}^3$: receiver location):

$$h(\tau, \mathbf{x}) = \sum_{l=1}^{L_p} \gamma_l(\mathbf{x}) \, \delta(\tau - \tau_l(\mathbf{x}))$$
(1)

• Channel impulse response ($\mathbf{x} \in \mathbb{R}^3$: receiver location):

$$h(\tau, \mathbf{x}) = \sum_{l=1}^{L_p} \gamma_l(\mathbf{x}) \, \delta(\tau - \tau_l(\mathbf{x}))$$
(1)

• Channel frequency response (f_k : considered frequency):

$$h(f_k, \mathbf{x}) = \sum_{l=1}^{L_p} \gamma_l(\mathbf{x}) e^{-j2\pi f_k \tau_l(\mathbf{x})}$$

Baptiste CHATELIER

(2)

• Channel impulse response ($\mathbf{x} \in \mathbb{R}^3$: receiver location):

$$h(\tau, \mathbf{x}) = \sum_{l=1}^{L_p} \gamma_l(\mathbf{x}) \, \delta(\tau - \tau_l(\mathbf{x}))$$

• Channel frequency response (f_k : considered frequency):

$$h(f_k, \mathbf{x}) = \sum_{l=1}^{L_p} \gamma_l(\mathbf{x}) e^{-j2\pi f_k \tau_l(\mathbf{x})}$$

$$= \sum_{l=1}^{L_p} \frac{\alpha_l e^{j\beta_l}}{d_l(\mathbf{x})} e^{-j\frac{2\pi}{\lambda_k} d_l(\mathbf{x})}$$

(2)

(3)

(1)

Channel impulse response ($\mathbf{x} \in \mathbb{R}^3$: receiver location):

$$h(\tau, \mathbf{x}) = \sum_{l=1}^{L_p} \gamma_l(\mathbf{x}) \, \delta(\tau - \tau_l(\mathbf{x}))$$

Channel frequency response (f_k : considered frequency):

$$h(f, \mathbf{x}) = \sum_{p=0}^{L_p} c_p(\mathbf{x}) e^{-j2\pi i \mathbf{x}}$$

$$h(f_k, \mathbf{x}) = \sum_{l=1}^{L_p} \gamma_l(\mathbf{x}) e^{-j2\pi f_k \tau_l(\mathbf{x})}$$

$$= \sum_{l=1}^{L_p} \frac{\alpha_l e^{j\beta_l}}{d_l(\mathbf{x})} e^{-j\frac{2\pi}{\lambda_k} d_l(\mathbf{x})}$$
(3)

How to learn this mapping in a system with N_a antennas operating on N_s frequencies?

(1)

(2)

• Use of the Implicit Neural Representation (INR) concept:

- Use of the Implicit Neural Representation (INR) concept:
 - Neural networks are universal function approximators^{1,2}

¹Hornik, Stinchcombe, and White, "Multilayer feedforward networks are universal approximators".

²Cybenko, "Approximation by superpositions of a sigmoidal function".

- Use of the Implicit Neural Representation (INR) concept:
 - Neural networks are universal function approximators^{1,2}
 - Using \mathbf{x} , one can design and train a neural network in a supervised manner to learn a representation of $\mathbf{H}(\mathbf{x})$

¹Hornik, Stinchcombe, and White, "Multilayer feedforward networks are universal approximators".

²Cybenko, "Approximation by superpositions of a sigmoidal function".

- Use of the Implicit Neural Representation (INR) concept:
 - Neural networks are universal function approximators^{1,2}
 - Using ${\bf x},$ one can design and train a neural network in a supervised manner to learn a representation of ${\bf H}\,({\bf x})$
- Goal: learn

$$f_{\theta} \colon \mathbb{R}^{3} \longrightarrow \mathbb{C}^{N_{a} \times N_{s}}$$

$$\mathbf{x} \longrightarrow \mathbf{H}(\mathbf{x})$$
(4)

¹Hornik, Stinchcombe, and White, "Multilayer feedforward networks are universal approximators".

²Cybenko, "Approximation by superpositions of a sigmoidal function". *Baptiste CHATELIER*

- Use of the Implicit Neural Representation (INR) concept:
 - Neural networks are universal function approximators^{1,2}
 - Using ${\bf x}$, one can design and train a neural network in a supervised manner to learn a representation of ${\bf H}\left({\bf x}\right)$
- Goal: learn

$$f_{\theta} \colon \mathbb{R}^{3} \longrightarrow \mathbb{C}^{N_{a} \times N_{s}}$$

$$\mathbf{x} \longrightarrow \mathbf{H}(\mathbf{x})$$
(4)

How to structure and learn $f_{\theta}(\mathbf{x})$?

¹Hornik, Stinchcombe, and White, "Multilayer feedforward networks are universal approximators".

²Cybenko, "Approximation by superpositions of a sigmoidal function". Baptiste CHATELIER

Classical architecture (MLPs) are biased towards learning low frequency content^{3,4}

³Rahaman et al., "On the spectral bias of neural networks".

⁴Cao et al., "Towards Understanding the Spectral Bias of Deep Learning". Baptiste CHATELIER

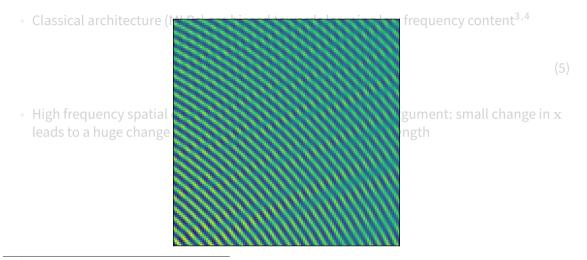
• Classical architecture (MLPs) are biased towards learning low frequency content^{3,4}

$$h\left(f_{k},\mathbf{x}\right) = \sum_{l=1}^{L_{p}} \frac{\alpha_{l} e^{j\beta_{l}}}{d_{l}\left(\mathbf{x}\right)} e^{-j\frac{2\pi}{\lambda_{k}} d_{l}\left(\mathbf{x}\right)}$$
(5)

• High frequency spatial dependence due to the exponential argument: small change in ${\bf x}$ leads to a huge change in ${\bf H}({\bf x}) \to$ on the order of the wavelength

³Rahaman et al., "On the spectral bias of neural networks".

⁴Cao et al., "Towards Understanding the Spectral Bias of Deep Learning". Baptiste CHATELIER



³Rahaman et al., "On the spectral bias of neural networks".

⁴Cao et al., "Towards Understanding the Spectral Bias of Deep Learning". Baptiste CHATELIER

Classical architecture (MLPs) are biased towards learning low frequency content^{3,4}

$$h\left(f_{k},\mathbf{x}\right) = \sum_{l=1}^{L_{p}} \frac{\alpha_{l} e^{j\beta_{l}}}{d_{l}\left(\mathbf{x}\right)} e^{-j\frac{2\pi}{\lambda_{k}} d_{l}\left(\mathbf{x}\right)}$$
(5)

• High frequency spatial dependence due to the exponential argument: small change in $\mathbf x$ leads to a huge change in $\mathbf H\left(\mathbf x\right)\to$ on the order of the wavelength

How to learn $f_{\theta}(\mathbf{x})$ without suffering from the spectral bias?

³Rahaman et al., "On the spectral bias of neural networks".

⁴Cao et al., "Towards Understanding the Spectral Bias of Deep Learning". Baptiste CHATELIER

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

- Machine learning
 - Data based
 - Low bias
 - High complexity

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

- Machine learning
 - Data based
 - Low bias
 - High complexity

Hybrid approach: Model-based machine learning

Use models to structure, initialize or optimize learning methods

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

- Machine learning
 - Data based
 - Low bias
 - High complexity

Hybrid approach: Model-based machine learning

Use models to structure, initialize or optimize learning methods

Make models more flexible: reduce bias of signal processing methods

Typical data processing setting:

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation:

- Signal processing
 - Model based
 - Large bias
 - Low complexity

- Machine learning
 - Data based
 - Low bias
 - High complexity

Hybrid approach: Model-based machine learning

Use models to structure, initialize or optimize learning methods

- Make models more flexible: reduce bias of signal processing methods
- Guide machine learning methods: reduce their complexity

Typical data processing setting

 We observe a large number of correlated variables, explained by a small number of independent factors.

There are two complementary approaches to handle this situation

Signal processing

Machine learning

Use the physical channel model to structure a neural network that overcomes the spectral bias

Low complexity

High complexity

Hybrid approach: Model-based machine learning Use models to structure, initialize or optimize learning methods

- Make models more flexible: reduce bias of signal processing methods
- Guide machine learning methods: reduce their complexity

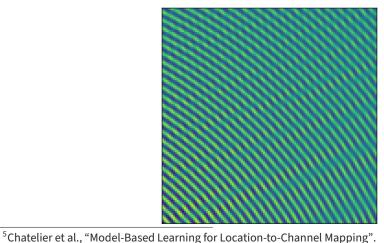
• Main idea^{5,6}: planar approximation of spherical wavefronts using Taylor expansions

⁵Chatelier et al., "Model-Based Learning for Location-to-Channel Mapping".

⁶Chatelier et al., "Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping".

Baptiste CHATELIER

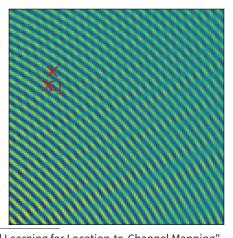
• Main idea^{5,6}: planar approximation of spherical wavefronts using Taylor expansions



⁶Chatelier et al., "Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping".

Baptiste CHATELIER

• Main idea^{5,6}: planar approximation of spherical wavefronts using Taylor expansions

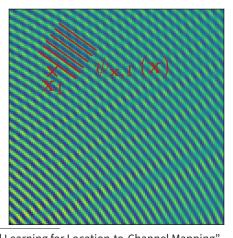


⁵Chatelier et al., "Model-Based Learning for Location-to-Channel Mapping".

⁶Chatelier et al., "Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping".

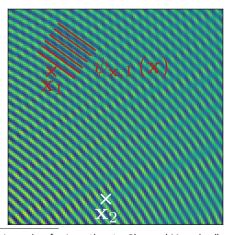
Baptiste CHATELIER

Main idea^{5,6}: planar approximation of spherical wavefronts using Taylor expansions



⁵Chatelier et al., "Model-Based Learning for Location-to-Channel Mapping".
⁶Chatelier et al., "Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping".

• Main idea^{5,6}: planar approximation of spherical wavefronts using Taylor expansions

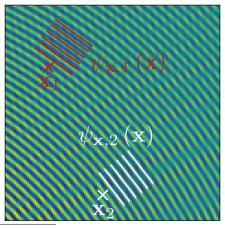


⁵Chatelier et al., "Model-Based Learning for Location-to-Channel Mapping".

⁶Chatelier et al. "Model Based Learning for Multi-Antonna Multi-Frequency Location to Channel

5/15

Main idea^{5,6}: planar approximation of spherical wavefronts using Taylor expansions



⁵Chatelier et al., "Model-Based Learning for Location-to-Channel Mapping".

⁶Chatelier et al., "Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping". *Baptiste CHATELIER*

GENERALIZATION

• This results in a sparse recovery problem with a slowly varying coefficients vector $\mathbf{w}(\mathbf{x})$:

GENERALIZATION

 ${}_{^{\circ}}$ This results in a sparse recovery problem with a slowly varying coefficients vector $\mathbf{w}\left(\mathbf{x}\right)$:

$$\forall \mathbf{x} \in \mathbb{R}^{3}, \ \mathbf{H}(\mathbf{x}) \simeq \sum_{i=1}^{D} \left(\mathbf{w}(\mathbf{x}) \odot \tilde{\boldsymbol{\psi}}_{\mathbf{x}}(\mathbf{x}) \right) \tilde{\boldsymbol{\psi}}_{\mathbf{a},i} \tilde{\boldsymbol{\psi}}_{\mathbf{f},i}^{\mathsf{T}}$$
(6)

with
$$\|\mathbf{w}\left(\mathbf{x}\right)\|_{0} = L_{p}$$

 ${}^{ullet}\, ilde{\psi}_{{f a},i}$ and $ilde{\psi}_{{f f},i}$ allow antenna and frequency extrapolation

GENERALIZATION

 $\, \bullet \,$ This results in a sparse recovery problem with a slowly varying coefficients vector $\mathbf{w} \, (\mathbf{x}) :$

$$\forall \mathbf{x} \in \mathbb{R}^{3}, \ \mathbf{H}(\mathbf{x}) \simeq \sum_{i=1}^{D} \left(\mathbf{w}(\mathbf{x}) \odot \tilde{\boldsymbol{\psi}}_{\mathbf{x}}(\mathbf{x}) \right) \tilde{\boldsymbol{\psi}}_{\mathbf{a},i} \tilde{\boldsymbol{\psi}}_{\mathbf{f},i}^{\mathsf{T}}$$

$$\text{with } \|\mathbf{w}(\mathbf{x})\|_{0} = L_{n}$$

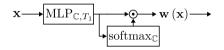
$$(6)$$

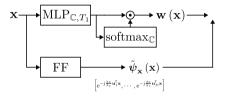
- ullet $ilde{\psi}_{\mathbf{a},i}$ and $ilde{\psi}_{\mathbf{f},i}$ allow antenna and frequency extrapolation
- Alternative formulation:

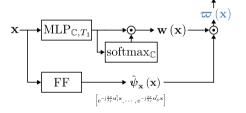
$$\forall \mathbf{x} \in \mathbb{R}^{3}, \text{ vec} \left(\mathbf{H}\left(\mathbf{x}\right)\right) \simeq \left(\tilde{\mathbf{\Psi}}_{\mathbf{f}}\left(\mathbf{x}\right) \otimes \tilde{\mathbf{\Psi}}_{\mathbf{a}}\left(\mathbf{x}\right)\right) \text{ vec} \left(\text{diag}\left(\mathbf{w}\left(\mathbf{x}\right) \odot \tilde{\boldsymbol{\psi}}_{\mathbf{x}}\left(\mathbf{x}\right)\right)\right) \tag{7}$$

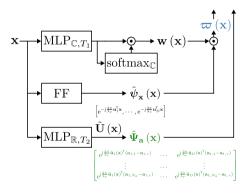
$$\text{with } \|\mathbf{w}\left(\mathbf{x}\right)\|_{0} = L_{p}$$

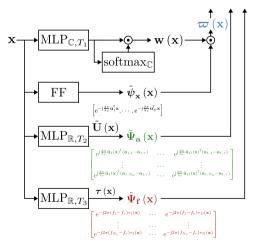
 \mathbf{x}

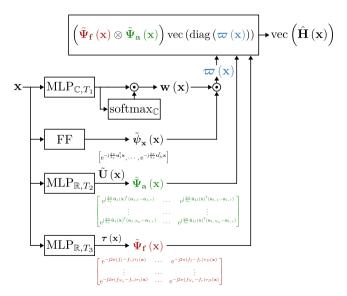








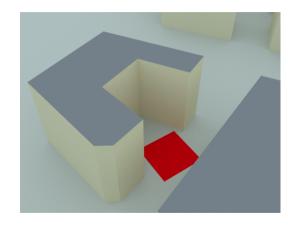




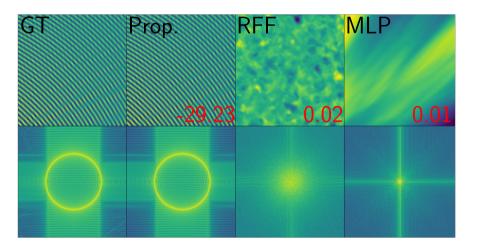
MB-ML: we used the channel model to structure a neural network

LEARNING FRAMEWORK

- Scene:
 - 10m by 10m square plane
 - Uniformly dropped train/test locations
 - Performance evaluation on $\lambda/4$ uniform grid (210k locs.)



RESULTS



- Top row: real part of the reconstructed channels with NMSE in dB (in red)
- Bottom row: 2D Fourier transform of the reconstruction

The objective was to learn:

$$f_{\boldsymbol{\theta}} \colon \mathbb{R}^3 \longrightarrow \mathbb{C}^{N_a \times N_s}$$

 $\mathbf{x} \longrightarrow \mathbf{H}(\mathbf{x})$

(8)

sub-wavelength level

• The objective was to learn:

$$f_{\theta} \colon \mathbb{R}^3 \longrightarrow \mathbb{C}^{N_a \times N_s}$$

 $\mathbf{x} \longrightarrow \mathbf{H}(\mathbf{x})$

Once trained, this model achieves near-perfect channel reconstruction, *at the*

 $\mathbf{H}\left(\mathbf{x}\right)$ (8)

10/15

• The objective was to learn:

$$f_{\boldsymbol{\theta}} \colon \mathbb{R}^3 \longrightarrow \mathbb{C}^{N_a \times N_s}$$

 $\mathbf{x} \longrightarrow \mathbf{H}(\mathbf{x})$

(8)

 Once trained, this model achieves near-perfect channel reconstruction, at the sub-wavelength level

 $f_{ heta}$ can be seen as a generative neural channel model in the considered scene

• The objective was to learn:

$$f_{\boldsymbol{\theta}} \colon \mathbb{R}^3 \longrightarrow \mathbb{C}^{N_a \times N_s}$$

 $\mathbf{x} \longrightarrow \mathbf{H}(\mathbf{x})$

(8)

Once trained, this model achieves near-perfect channel reconstruction, at the sub-wavelength level

$f_{ heta}$ can be seen as a generative neural channel model in the considered scene

Potential applications include:

• The objective was to learn:

$$f_{\boldsymbol{\theta}} \colon \mathbb{R}^3 \longrightarrow \mathbb{C}^{N_a \times N_s}$$

 $\mathbf{x} \longrightarrow \mathbf{H}(\mathbf{x})$

(8)

 Once trained, this model achieves near-perfect channel reconstruction, at the sub-wavelength level

f_{θ} can be seen as a generative neural channel model in the considered scene

- Potential applications include:
 - Channel prediction

• The objective was to learn:

$$f_{\boldsymbol{\theta}} \colon \mathbb{R}^3 \longrightarrow \mathbb{C}^{N_a \times N_s}$$

$$\mathbf{x} \longrightarrow \mathbf{H}(\mathbf{x})$$
(8)

 Once trained, this model achieves near-perfect channel reconstruction, at the sub-wavelength level

$f_{ heta}$ can be seen as a generative neural channel model in the considered scene

- Potential applications include:
 - Channel prediction
 - Precise localization

• Given $\mathbf{H}(\mathbf{x})$, how to estimate \mathbf{x} ?

- Given $\mathbf{H}(\mathbf{x})$, how to estimate \mathbf{x} ?
- Fingerprinting-based localization:

- Given $\mathbf{H}(\mathbf{x})$, how to estimate \mathbf{x} ?
- Fingerprinting-based localization:
 - Estimate $\mathbf x$ as the position in a dictionary $\mathcal G$ whose associated channel coefficients are the most similar with $\mathbf H(\mathbf x)$.

$$\hat{\mathbf{x}}\left(\mathbf{H}\left(\mathbf{x}\right)\right) = \operatorname*{arg\,max}_{\tilde{\mathbf{x}} \in G} \operatorname{sim}\left(\mathbf{H}\left(\mathbf{x}\right), \mathbf{H}\left(\tilde{\mathbf{x}}\right)\right) \tag{9}$$

- Given $\mathbf{H}(\mathbf{x})$, how to estimate \mathbf{x} ?
- Fingerprinting-based localization:
 - Estimate $\mathbf x$ as the position in a dictionary $\mathcal G$ whose associated channel coefficients are the most similar with $\mathbf H(\mathbf x)$.

$$\hat{\mathbf{x}}\left(\mathbf{H}\left(\mathbf{x}\right)\right) = \underset{\tilde{\mathbf{x}} \in \mathcal{G}}{\arg\max} \operatorname{sim}\left(\mathbf{H}\left(\mathbf{x}\right), \mathbf{H}\left(\tilde{\mathbf{x}}\right)\right) \tag{9}$$

Localization accuracy is limited by the dictionary resolution

- Given $\mathbf{H}(\mathbf{x})$, how to estimate \mathbf{x} ?
- Fingerprinting-based localization:
 - Estimate ${\bf x}$ as the position in a dictionary ${\cal G}$ whose associated channel coefficients are the most similar with ${\bf H}({\bf x})$.

$$\hat{\mathbf{x}}\left(\mathbf{H}\left(\mathbf{x}\right)\right) = \operatorname*{arg\,max}_{\tilde{\mathbf{x}} \in \mathcal{G}} \operatorname{sim}\left(\mathbf{H}\left(\mathbf{x}\right), \mathbf{H}\left(\tilde{\mathbf{x}}\right)\right) \tag{9}$$

Localization accuracy is limited by the dictionary resolution

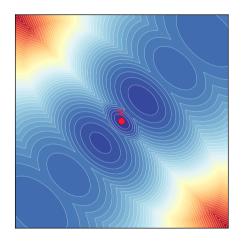
- Idea: use the trained f_{θ} to generate channel coefficients at wanted locations to enhance localization accuracy

Based on grid-search and gradient descent⁷, using a Frobenius norm similarity measure:

$$\mu_{\mathsf{PS}}(\mathbf{H}(\mathbf{x}), \tilde{\mathbf{x}}|\boldsymbol{\theta}) = \|\mathbf{H}(\mathbf{x}) - f_{\boldsymbol{\theta}}(\tilde{\mathbf{x}})\|_{\mathsf{E}} \tag{10}$$

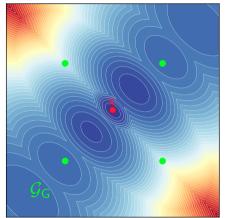
⁷Chatelier et al., Model-based Implicit Neural Representation for sub-wavelength Radio Localization.
Baptiste CHATELIER

- How to estimate x?
- Background: $\|\mathbf{H}\left(\mathbf{x}\right) f_{\boldsymbol{\theta}}\left(\tilde{\mathbf{x}}\right)\|_{\mathsf{F}}$



- Generate the global grid \mathcal{G}_G based on topological knowledge of the scene

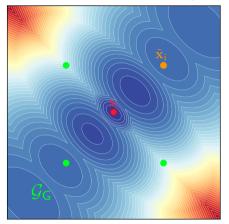
Global grid: $\mathcal{O}(|\mathcal{G}_{\mathsf{G}}| \kappa_{f_{\boldsymbol{\theta}}})$



- Generate the global grid \mathcal{G}_G based on topological knowledge of the scene
- Using f_{θ} , solve:

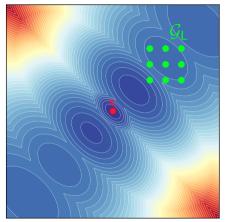
$$\tilde{\mathbf{x}}_{i} = \underset{\tilde{\mathbf{x}} \in \mathcal{G}_{G}}{\operatorname{arg\,min}} \|\mathbf{H}(\mathbf{x}) - f_{\boldsymbol{\theta}}(\tilde{\mathbf{x}})\|_{\mathsf{F}}$$
 (10)

Global grid: $\mathcal{O}(|\mathcal{G}_{\mathsf{G}}| \kappa_{f_{\boldsymbol{\theta}}})$



- Generate the local grid \mathcal{G}_{L} around the obtained location

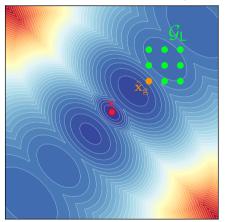
Local grid: $\mathcal{O}(|\mathcal{G}_{\mathsf{L}}| \kappa_{f_{\boldsymbol{\theta}}})$



- Generate the local grid \mathcal{G}_L around the obtained location
- Using f_{θ} , solve:

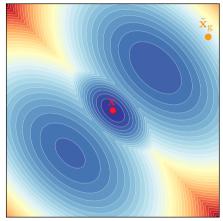
$$\tilde{\mathbf{x}}_{g} = \underset{\tilde{\mathbf{x}} \in \mathcal{G}_{L}}{\operatorname{arg \, min}} \|\mathbf{H}(\mathbf{x}) - f_{\boldsymbol{\theta}}(\tilde{\mathbf{x}})\|_{\mathsf{F}}$$
 (10)

Local grid: $\mathcal{O}(|\mathcal{G}_{\mathsf{L}}| \kappa_{f_{\boldsymbol{\theta}}})$



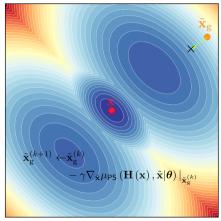
- Perform N_{∇} gradient descent steps

GD₁: $\mathcal{O}\left(N_{\nabla}\kappa_{f_{\theta}}\right)$



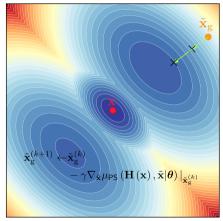
- Perform N_{∇} gradient descent steps

GD₁: $\mathcal{O}\left(N_{\nabla}\kappa_{f_{\theta}}\right)$



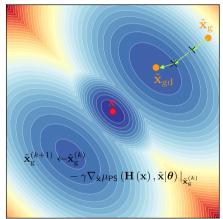
- Perform N_{∇} gradient descent steps

GD₁: $\mathcal{O}\left(N_{\nabla}\kappa_{f_{\theta}}\right)$



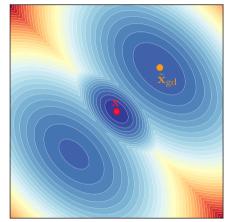
- Perform N_{∇} gradient descent steps

 GD_1 : $\mathcal{O}\left(N_{\nabla}\kappa_{f_{\theta}}\right)$



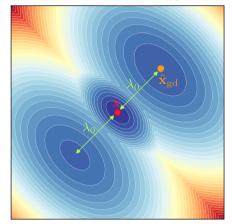
- Perform N_{∇} gradient descent steps
- · Local minima issue

Circles: $\mathcal{O}(|\mathcal{G}_{\mathsf{C}}| \kappa_{f_{\boldsymbol{\theta}}})$



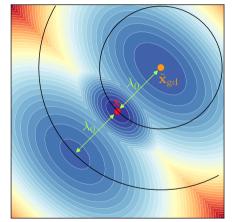
- Perform N_{∇} gradient descent steps
- Local minima issue
- Spacing between minima derived from $\mu_{\rm PS}$

Circles: $\mathcal{O}(|\mathcal{G}_{\mathsf{C}}| \kappa_{f_{\boldsymbol{\theta}}})$



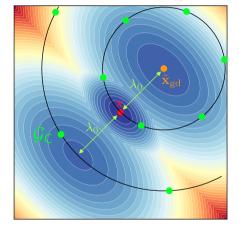
- Perform N_{∇} gradient descent steps
- Local minima issue
- Spacing between minima derived from μ_{PS}
- Generate circles of radius $k\lambda_0, k \in \mathbb{N}^*$

Circles: $\mathcal{O}(|\mathcal{G}_{\mathsf{C}}| \kappa_{f_{\boldsymbol{\theta}}})$



- Perform N_{∇} gradient descent steps
- Local minima issue
- Spacing between minima derived from μ_{PS}
- Generate circles of radius $k\lambda_0, k \in \mathbb{N}^*$
- Generate \mathcal{G}_C by sampling from the circles

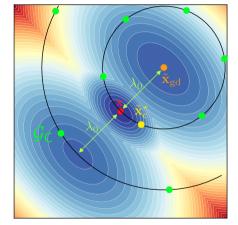
Circles: $\mathcal{O}(|\mathcal{G}_{\mathsf{C}}| \kappa_{f_{\boldsymbol{\theta}}})$



- Perform N_{∇} gradient descent steps
- Local minima issue
- Spacing between minima derived from μ_{PS}
- Generate circles of radius $k\lambda_0, k \in \mathbb{N}^*$
- Generate \mathcal{G}_{C} by sampling from the circles
- Using f_{θ} , solve:

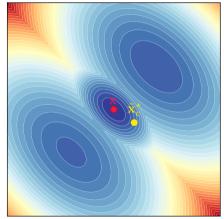
$$\tilde{\mathbf{x}}_{c^{\star}} = \operatorname*{arg\,min}_{\tilde{\mathbf{x}} \in \mathcal{G}_{C}} \|\mathbf{H}\left(\mathbf{x}\right) - f_{\boldsymbol{\theta}}\left(\tilde{\mathbf{x}}\right)\|_{\mathsf{F}} \qquad (10)$$

Circles: $\mathcal{O}(|\mathcal{G}_{\mathsf{C}}| \kappa_{f_{\boldsymbol{\theta}}})$



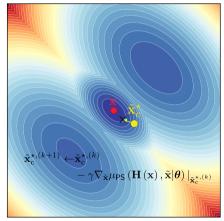
- Perform N_{∇} gradient descent steps

 GD_2 : $\mathcal{O}\left(N_{\nabla}\kappa_{f_{\theta}}\right)$



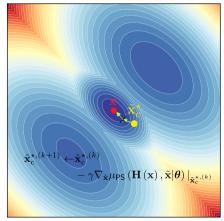
- Perform N_{∇} gradient descent steps

GD₂: $\mathcal{O}(N_{\nabla}\kappa_{f_{\theta}})$



- Perform N_{∇} gradient descent steps

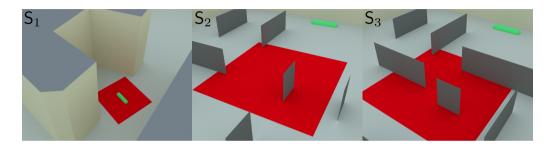
GD₂: $\mathcal{O}(N_{\nabla}\kappa_{f_{\theta}})$



• Perform N_{∇} gradient descent steps

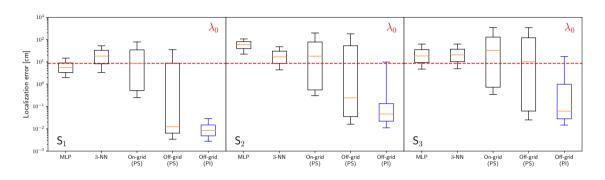
MB-ML: we used the channel model to structure a neural network and optimize a gradient descent process

SIMULATION SETUP



• Localization performance evaluated on 10k independent locations within the red plane

LOCALIZATION PERFORMANCE



- PI: phase insensitive similarity measure, used during the grid search on the global grid to mitigate the local minima issue
- Sub-wavelength median localization accuracy for the proposed method (in blue)

Combining INR and MB-ML allowed us to:

- Combining INR and MB-ML allowed us to:
 - Learn the location-to-channel mapping and overcome the spectral bias issue

- Combining INR and MB-ML allowed us to:
 - Learn the location-to-channel mapping and overcome the spectral bias issue
 - Optimize a localization method based on the proposed network

- Combining INR and MB-ML allowed us to:
 - Learn the location-to-channel mapping and overcome the spectral bias issue
 - Optimize a localization method based on the proposed network

General advantages of MB-ML:

- Combining INR and MB-ML allowed us to:
 - Learn the location-to-channel mapping and overcome the spectral bias issue
 - Optimize a localization method based on the proposed network
- General advantages of MB-ML:
 - Increased interpretability

- Combining INR and MB-ML allowed us to:
 - Learn the location-to-channel mapping and overcome the spectral bias issue
 - Optimize a localization method based on the proposed network
- General advantages of MB-ML:
 - Increased interpretability
 - Reduced complexity

- Combining INR and MB-ML allowed us to:
 - Learn the location-to-channel mapping and overcome the spectral bias issue
 - Optimize a localization method based on the proposed network
- General advantages of MB-ML:
 - Increased interpretability
 - Reduced complexity
 - Often better performance

- Combining INR and MB-ML allowed us to:
 - Learn the location-to-channel mapping and overcome the spectral bias issue
 - Optimize a localization method based on the proposed network
- General advantages of MB-ML:
 - Increased interpretability
 - Reduced complexity
 - Often better performance

(Localization)

