Baptiste CHATELIER
Supervisors: Luc LE MAGOAROU, Matthieu CRUSSIERE, Vincent CORLAY
PhD defense - INSA Rennes - January 30, 2026




Chalmers University of Technology, Sweden
G. Peyré, “Manifold models for signals and images”, in Computer Vision and Image Understanding, 2009
M. Elad, “Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing”, Springer, 2010
Nir Shlezinger, Yonina C. Eldar, “Model-Based Deep Learning”, Foundations and Trends in Signal Processing, 2023
There are two complementary approaches to handle this situation:
Hybrid approach \(\rightarrow\) model-based machine learning
Use models to structure, initialize or optimize learning methods
Thesis problematic
Can MB-ML be used to get interpretable and low-complexity solutions in wireless communications?
Research axes
(A1) Location-to-channel mapping
(A2) Hardware impairments
(A3) Channel compression
Chapters 4 and 5 of the manuscript
J. Hoydis et al., “Sionna: An Open-Source Library for Next-Generation Physical Layer Research”, 2022
Drawbacks:
Problem 3.1: MB-ML for radio-environment compression
\[ \mini{\ftheta}{\espo{\norm{\textcolor{#B22222}{\ftheta\left(\bx\right)}-\bH\left(\bx\right)}{\mathsf{F}}^2}{\left(\bx, \bH \left(\bx\right)\right) \sim p_{\bx,\bH}}}{\ftheta \in \mathcal{H}} \]
where:
\[ \begin{aligned} \textcolor{#B22222}{\ftheta} \colon \mbbR^3 &\longrightarrow \mbbC^{N_a \times N_s} \\ \bx &\longrightarrow \hat{\bH}\left(\bx\right) \end{aligned} \]
Use of the Implicit Neural Representation concept:
K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators”, in Neural Networks, 1989
G. Cybenko, “Approximation by superpositions of a sigmoidal function”, in Mathematics of Controls, Signals and Systems, 1989
N. Rahaman et al., “On the spectral bias of neural networks”, in ICML, 2019
Y. Cao et al., “Towards Understanding the Spectral Bias of Deep Learning”, in IJCAI, 2021
Benefits:
How to train \(\ftheta\) without suffering from the spectral bias?
MB-ML paradigm application
Use the physical channel model to structure a neural network that overcomes the spectral bias.
Main idea: local approximation of the propagation distance using Taylor expansions
B. Chatelier, L. Le Magoarou, V. Corlay, M. Crussière, “Model-Based Learning for Location-to-Channel Mapping”, in IEEE ICASSP, 2024
B. Chatelier, L. Le Magoarou, V. Corlay, M. Crussière, “Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping”, in IEEE JSTSP, 2024
Proposition 4.1: Approximated channel interpretation
\(\forall \left(\bx, \ba_{l,j}\right) \in \mcV_{\bx} \times \mcV_{\ba}\): \[ h_{j,k}\left(\bx\right) \simeq \sum_{l=1}^{L_p} \underbrace{\gamma_l h_{l,r}\left(\bx_r\right)}_{\text{Reference channel}} \underbrace{\vphantom{\gamma_l h_{l,r}\left(\bx_r\right)} \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda_{r}}\bu_{l,r}\left(\bx_r\right)^\transp\left(\bx-\bx_r\right)}}_{\text{Location correction}} \underbrace{\vphantom{\gamma_l h_{l,r}\left(\bx_r\right)}\mathrm{e}^{-\mathrm{j}2\pi \left(f_k-f_r\right)\tau_{l,r}}}_{\text{Frequency correction}} \underbrace{\vphantom{\gamma_l h_{l,r}\left(\bx_r\right)}\mathrm{e}^{\mathrm{j}\frac{2\pi}{\lambda_{r}}\bu_{l,r}\left(\bx_r\right)^\transp\left(\ba_{l,j}-\ba_{l,r}\right)}}_{\text{Antenna correction}} \]Theorem 4.2: Global sparse channel approximation (vectorized)
\(\forall \bx \in \mbbR^3\):Theorem 4.2: Global sparse channel approximation (vectorized)
\(\forall \bx \in \mbbR^3\):Theorem 4.2: Global sparse channel approximation (vectorized)
\(\forall \bx \in \mbbR^3\):Theorem 4.2: Global sparse channel approximation (vectorized)
\(\forall \bx \in \mbbR^3\):B. Chatelier, L. Le Magoarou, V. Corlay, M. Crussière, “Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping”, in IEEE JSTSP, 2024
We used the MB-ML paradigm to structure a neural network
B. Chatelier, L. Le Magoarou, V. Corlay, M. Crussière, “Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping”, in IEEE JSTSP, 2024

\(100+\)x reduction in memory without major reconstruction error

B. Chatelier, L. Le Magoarou, V. Corlay, M. Crussière, “Model-Based Learning for Multi-Antenna Multi-Frequency Location-to-Channel Mapping”, in IEEE JSTSP, 2024
Problem 3.2: MB-ML for wireless localization
\[ \mini{\ftheta}{\espo{\norm{\textcolor{#B22222}{\ftheta\left(\bH\left(\bx\right)\right)}-\bx}{2}^2}{\left(\bx, \bH \left(\bx\right)\right) \sim p_{\bH,\bx}}}{\ftheta \in \mathcal{H}} \]
where:
\[ \begin{aligned} \textcolor{#B22222}{\ftheta} \colon \mbbC^{N_a \times N_s} &\longrightarrow \mbbR^3\\ \bH\left(\bx\right) &\longrightarrow \hat{\bx} \end{aligned} \]
\[ \hat{\bx}\left(\bH\left(\bx\right)\right) = \argmax{\tilde{\bx} \in \mathcal{G}} \simil{\bH\left(\bx\right),\bH\left(\tilde{\bx}\right)} \]
Drawback:
B. Chatelier, V. Corlay, M. Furkan Keskin, M. Crussière, H. Wymeersch, L. Le Magoarou “Model-based Implicit Neural Representation for sub-wavelength Radio Localization”, submitted to IEEE TWC
Idea:
MB-ML paradigm application
Use the physical channel model to structure a neural architecture and optimize a gradient-descent process.
B. Chatelier, V. Corlay, M. Furkan Keskin, M. Crussière, H. Wymeersch, L. Le Magoarou “Model-based Implicit Neural Representation for sub-wavelength Radio Localization”, submitted to IEEE TWC
\(100\)-\(1000\)x performance for \(10\)x less memory
Chapters 6 and 7 of the manuscript
In many communication problems, the measured signals \(\simeq\) noisy linear measurements of the channel \(\bh\):
\(\bzeta^{\star}\) unknown \(\Rightarrow\bPsi_{\bzeta^{\star}} \left(\bphi\right)\) unknown
\(\bzeta\): system parameters
How to learn the true system parameters \(\bzeta^{\star}\)?
DoA : Direction of Arrival
HWIs : Hardware impairments
\[ \begin{align} \by &= \bh + \bn\\ & = \sum_{l=1}^{L_p} \alpha_l \bpsi_{\bzeta} \left(\tau_l\right) + \bn \end{align} \]
Problem 3.3.1: MB-ML for channel estimation
\[ \mini{\ftheta}{\espo{\norm{\textcolor{#B22222}{\ftheta\left(\by\right)}-\bh}{2}^2}{\left(\by, \bh \right) \sim p_{\by,\bh}}}{\ftheta \in \mathcal{H}} \]
where:
\[ \begin{aligned} \textcolor{#B22222}{\ftheta} \colon \mbbC^{N_s} &\longrightarrow \mbbC^{N_s}\\ \by &\longrightarrow \hat{\bh} \end{aligned} \]
\[ \text{Dictionary}: \bPsi_{\bzeta} = \left( \bpsi_{\bzeta}\left(\tau_1\right), \cdots, \bpsi_{\bzeta}\left(\tau_A\right) \right) \]
\[ \mini{\bu}{\norm{\bPsi_{\bzeta}\bu - \by }{2}}{\norm{\bu}{0}\leq A} \]
MB-ML paradigm application
Use the physical channel model to structure and initialize a neural network that learns HWIs.
T. Yassine and L. Le Magoarou, “mpNet: Variable Depth Unfolded Neural Network for Massive MIMO Channel Estimation”, in IEEE TWC, 2O22
B. Chatelier, L. Le Magoarou and G. Redieteab, “Efficient Deep Unfolding for SISO-OFDM Channel Estimation”, in IEEE ICC, 2023
N. Klaimi, A. Bedoui, C. Elvira, P. Mary and L. Le Magoarou, “Model-based learning for joint channel estimation and hybrid MIMO precoding”, in IEEE SPAWC, 2025
\(N_s\): number of frequencies
B. Chatelier, L. Le Magoarou and G. Redieteab, “Efficient Deep Unfolding for SISO-OFDM Channel Estimation”, in IEEE ICC, 2023
\(1000\)x reduction of learnable params., \(100\)x reduction of inference time
D. H. Shmuel, J. P. Merkofer, G. Revach, R. J. G. van Sloun, N. Shlezinger “SubspaceNet: Deep Learning-Aided Subspace Methods for DoA Estimation” in IEEE TVT, 2025
DoA: Direction of Arrival
\[ \bY = \bA_{\bzeta}\left(\bphi\right) \bS + \bN \]
Problem 3.3.2: MB-ML for DoA estimation
\[ \mini{\ftheta}{\espo{\mu\left(\textcolor{#B22222}{\ftheta\left(\bY\right)},\bphi\right)}{\left(\bY, \bphi \right) \sim p_{\bY,\bphi}}}{\ftheta \in \mathcal{H}} \]
where:
\[ \begin{aligned} \textcolor{#B22222}{\ftheta} \colon \mbbC^{N_a \times T} &\longrightarrow \left[-\pi/2, \pi/2\right]^{M}\\ \bY &\longrightarrow \hat{\bphi} \end{aligned} \]
DoA: Direction of Arrival
What happens when the system parameters \(\bzeta\) are not perfectly known?
MB-ML paradigm application
Use the physical channel model to structure and initialize a learning method for the HWIs.
B. Chatelier, J. M. Mateos-Ramos, V. Corlay, C. Häger, M. Crussière, H. Wymeersch, L. Le Magoarou, “Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays”, in IEEE ICC, 2025
A. Gast, L. Le Magoarou, N. Shlezinger “Near Field Localization via AI-Aided Subspace Methods”, 2025
\(N_a\): number of antennas
Idea:
Leverage gradient descent to solve:
\[ \mini{\bzeta}{\espo{\mu\left(\hat{\bphi}\left(\bY \vert \bzeta\right),\bphi\right)}{\left(\bY, \bphi \right) \sim p_{\bY,\bphi}}}{\bzeta \in \mathcal{H}_{\bzeta}} \]
Problem:
The peak-finding method breaks gradient flow \(\rightarrow\) MUSIC is non-differentiable wrt. \(\bzeta\)
How to overcome this issue?
B. Chatelier, J. M. Mateos-Ramos, V. Corlay, C. Häger, M. Crussière, H. Wymeersch, L. Le Magoarou, “Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays”, in IEEE ICC, 2025
\(60\%\) reduction in estimation error for \(5\) sources
B. Chatelier, J. M. Mateos-Ramos, V. Corlay, C. Häger, M. Crussière, H. Wymeersch, L. Le Magoarou, “Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays”, in IEEE ICC, 2025
HWIs: Hardware impairments
DoA: Direction of Arrival
Chapters 8 and 9 of the manuscript
T. Yassine, B. Chatelier, V. Corlay, M. Crussière, S. Paquelet, O. Tirkkonen, L. Le Magoarou, “Model-Based Deep Learning for Beam Prediction Based on a Channel Chart” in IEEE ASILOMAR, 2023
B. Chatelier, V. Corlay, M. Crussière, L. Le Magoarou, “CSI Compresion using Channel Charting” in IEEE ASILOMAR, 2024
CSI: Channel State Information
FDD: Frequency Division Duplex
Problem 3.4: MB-ML for task-oriented CSI compression
\[ \mini{f_{\btheta_{\textsf{e}}}, \text{ } g_{\btheta_{\textsf{d}}}}{\espo{ \mu\left(\left(\textcolor{#4682B4}{g_{\btheta_\textsf{d}}} \circ \textcolor{#B22222}{f_{\btheta_\textsf{e}}}\right) \left(\bh\right), \bH \right) }{\bH \sim p_{\bH}}}{\left(f_{\btheta_\textsf{e}},g_{\btheta_\textsf{d}}\right) \in \mathcal{H}} \]
where: \[ \begin{aligned} \textcolor{#B22222}{f_{\btheta_\textsf{e}}} \colon \mbbC^{D} &\longrightarrow \mbbR^d\\ \bh &\longrightarrow \bz \end{aligned} \]
and:
\[ \begin{aligned} \textcolor{#4682B4}{g_{\btheta_\textsf{d}}} \colon \mbbR^d \times \cdots \times \mbbR^d &\longrightarrow \mbbC^{D\times K}\\ \left\{ \bz_1, \cdots, \bz_K \right\} &\longrightarrow \bW \end{aligned} \]
P. Ferrand, M. Guillaud, C. Studer and O. Tirkkonen, “Wireless Channel Charting: Theory, Practice, and Applications”, in IEEE Commun. Mag., 2023
Channel charting: dimensionality reduction method that preserves local neighborhoods
MB-ML paradigm application
Use the physical channel model to structure and initialize a neural encoder/decoder.
L. Le Magoarou, “Efficient channel charting via phase-insensitive distance computation”, in IEEE Wir. Commun. Lett., 2021
L. Le Magoarou, T. Yassine, S. Paquelet, and M. Crussière, “Channel charting based beamforming”, in IEEE ASILOMAR, 2022
T. Yassine, L. Le Magoarou, S. Paquelet, and M. Crussière, “Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting”, in IEEE SPAWC, 2022
B. Chatelier, V. Corlay, M. Crussière, L. Le Magoarou, “CSI Compresion using Channel Charting” in IEEE ASILOMAR, 2024
S. Taner, M. Guillaud, O. Tirkkonen, C. Studer, “Channel charting for streaming CSI data”” in IEEE ASILOMAR, 2023
B. Chatelier, V. Corlay, M. Crussière, L. Le Magoarou, “CSI Compresion using Channel Charting” in IEEE ASILOMAR, 2024
\(80\)x reduction of learnable params., \(16\)x increase in compression ratio
FDD: Frequency Division Duplex
CSI: Channel State Information
We have applied the MB-ML paradigm to several problems in wireless communications
HWIs: Hardware Impairments
CSI: Channel State Information
General advantages of MB-ML
Short term
Long term
Journal articles
International conference articles
National conference articles
Thanks!


F. Euchner, M. Gauger, S. Doerner, S. ten Brink, “A Distributed Massive MIMO Channel Sounder for “Big CSI Data”-driven Machine Learning”, in IEEE WSA, 2021
R. Wiesmayr, F. Zumegen, S. Taner, C. Dick, C. Studer, “CSI-Based User Positioning, Channel Charting, and Device Classification with an NVIDIA 5G Testbed”, in IEEE ASILOMAR, 2025
Use case examples:
Resilient parametric estimation, dynamic system tracking, channel decoding, ISAC system design…
Assumption: attenuation/phase proportional to the propagation distance
\[ \begin{align} h_{j,k}\left(\mathbf{x}\right) &= \sum_{l=1}^{L_p} \dfrac{\alpha_l \mathrm{e}^{\mathrm{j}\beta_l}}{d_l\left(\mathbf{x}\right)} \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda_k}d_l\left(\mathbf{x}\right)}\\ &\hphantom{\sum_{l=1}^{L_p} \dfrac{\alpha_l \mathrm{e}^{\mathrm{j}\beta_l}}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda_k}\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}}} \notag % &= \sum_{l=1}^{L_p} \dfrac{\alpha_l \mathrm{e}^{\mathrm{j}\beta_l}}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda_k}\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \end{align} \]
\[ \begin{align} h_{j,k}\left(\mathbf{x}\right) &= \sum_{l=1}^{L_p} \dfrac{\alpha_l \mathrm{e}^{\mathrm{j}\beta_l}}{d_l\left(\mathbf{x}\right)} \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda_k}d_l\left(\mathbf{x}\right)} \tag{22}\\ &= \sum_{l=1}^{L_p} \dfrac{\alpha_l \mathrm{e}^{\mathrm{j}\beta_l}}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda_k}\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \end{align} \]
\[ \begin{align} h_{j,k}\left(\mathbf{x}\right) &= \sum_{l=1}^{L_p} \dfrac{\alpha_l \mathrm{e}^{\mathrm{j}\beta_l}}{d_l\left(\mathbf{x}\right)} \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda_k}d_l\left(\mathbf{x}\right)} \tag{22}\\ &= \sum_{l=1}^{L_p} \dfrac{\alpha_l \mathrm{e}^{\mathrm{j}\beta_l}}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda_k}\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \tag{23}\\ &= \sum_{l=1}^{L_p} \dfrac{\alpha_l \mathrm{e}^{\mathrm{j}\beta_l}}{d_l\left(\mathbf{x}\right)} \mathrm{e}^{-\mathrm{j} 2\pi f_k \tau_{l,j} } \end{align} \]
\[ \norm{\mathbf{x}-\mathbf{a}_{l,j}}{2} \simeq \textcolor{black}{\norm{\mathbf{x}_r - \mathbf{a}_{l,r}}{2}} \textcolor{black}{+ \mathbf{u}_{l,j}\left(\mathbf{x}_r\right)^\transp\left(\mathbf{x}-\mathbf{x}_r\right)} \textcolor{black}{- \mathbf{u}_{l,r}\left(\mathbf{x}_r\right)^\transp \left(\mathbf{a}_{l,j}-\mathbf{a}_{l,r}\right)} \]
\[ \textcolor{#FF1B17}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \simeq \textcolor{black}{\norm{\mathbf{x}_r - \mathbf{a}_{l,r}}{2}} \textcolor{black}{+ \mathbf{u}_{l,j}\left(\mathbf{x}_r\right)^\transp\left(\mathbf{x}-\mathbf{x}_r\right)} \textcolor{black}{- \mathbf{u}_{l,r}\left(\mathbf{x}_r\right)^\transp \left(\mathbf{a}_{l,j}-\mathbf{a}_{l,r}\right)} \tag{25} \]
\[ \textcolor{#FF1B17}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \simeq \textcolor{#0D00BA}{\norm{\mathbf{x}_r - \mathbf{a}_{l,r}}{2}} \textcolor{black}{+ \mathbf{u}_{l,j}\left(\mathbf{x}_r\right)^\transp\left(\mathbf{x}-\mathbf{x}_r\right)} \textcolor{black}{- \mathbf{u}_{l,r}\left(\mathbf{x}_r\right)^\transp \left(\mathbf{a}_{l,j}-\mathbf{a}_{l,r}\right)} \tag{25} \]
\[ \textcolor{#FF1B17}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \simeq \textcolor{#0D00BA}{\norm{\mathbf{x}_r - \mathbf{a}_{l,r}}{2}} \textcolor{#62BE00}{+ \mathbf{u}_{l,j}\left(\mathbf{x}_r\right)^\transp\left(\mathbf{x}-\mathbf{x}_r\right)} \textcolor{black}{- \mathbf{u}_{l,r}\left(\mathbf{x}_r\right)^\transp \left(\mathbf{a}_{l,j}-\mathbf{a}_{l,r}\right)} \tag{25} \]
\[ \textcolor{#FF1B17}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \simeq \textcolor{#0D00BA}{\norm{\mathbf{x}_r - \mathbf{a}_{l,r}}{2}} \textcolor{#62BE00}{+ \mathbf{u}_{l,j}\left(\mathbf{x}_r\right)^\transp\left(\mathbf{x}-\mathbf{x}_r\right)} \textcolor{#FF8A00}{-\mathbf{u}_{l,r}\left(\mathbf{x}_r\right)^\transp \left(\mathbf{a}_{l,j}-\mathbf{a}_{l,r}\right)} \tag{25} \]
\[ \textcolor{#FF1B17}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \simeq \textcolor{#0D00BA}{\norm{\mathbf{x}_r - \mathbf{a}_{l,r}}{2}} \textcolor{#62BE00}{+ \mathbf{u}_{l,j}\left(\mathbf{x}_r\right)^\transp\left(\mathbf{x}-\mathbf{x}_r\right)} \textcolor{#FF8A00}{-\mathbf{u}_{l,r}\left(\mathbf{x}_r\right)^\transp \left(\mathbf{a}_{l,j}-\mathbf{a}_{l,r}\right)} \tag{25} \]
\[ \textcolor{#FF1B17}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \simeq \textcolor{#0D00BA}{\norm{\mathbf{x}_r - \mathbf{a}_{l,r}}{2}} \textcolor{#62BE00}{+ \mathbf{u}_{l,j}\left(\mathbf{x}_r\right)^\transp\left(\mathbf{x}-\mathbf{x}_r\right)} \textcolor{#FF8A00}{-\mathbf{u}_{l,r}\left(\mathbf{x}_r\right)^\transp \left(\mathbf{a}_{l,j}-\mathbf{a}_{l,r}\right)} \tag{25} \]
\[ \textcolor{#FF1B17}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \simeq \textcolor{#0D00BA}{\norm{\mathbf{x}_r - \mathbf{a}_{l,r}}{2}} \textcolor{#62BE00}{+ \mathbf{u}_{l,j}\left(\mathbf{x}_r\right)^\transp\left(\mathbf{x}-\mathbf{x}_r\right)} \textcolor{#FF8A00}{-\mathbf{u}_{l,r}\left(\mathbf{x}_r\right)^\transp \left(\mathbf{a}_{l,j}-\mathbf{a}_{l,r}\right)} \tag{25} \]
\[ \textcolor{#FF1B17}{\norm{\mathbf{x}-\mathbf{a}_{l,j}}{2}} \simeq \textcolor{#0D00BA}{\norm{\mathbf{x}_r - \mathbf{a}_{l,r}}{2}} \textcolor{#62BE00}{+ \mathbf{u}_{l,j}\left(\mathbf{x}_r\right)^\transp\left(\mathbf{x}-\mathbf{x}_r\right)} \textcolor{#FF8A00}{-\mathbf{u}_{l,r}\left(\mathbf{x}_r\right)^\transp \left(\mathbf{a}_{l,j}-\mathbf{a}_{l,r}\right)} \tag{25} \]

\[ \mu_{\textsf{PS}}\left(\bH\left(\bx\right), \tilde{\bx} \vert \btheta \right) = \norm{\bH\left(\bx\right) - \ftheta\left(\tilde{\bx}\right)}{\mathsf{F}} \]
Chatelier et al., “Model-based Implicit Neural Representation for sub-wavelength Radio Localization”.
\[ \tilde{\bx}_{\textrm{i}} = \argmin{\tilde{\bx} \in \mathcal{G}_{\textsf{G}}} \norm{\bH\left(\bx\right) - \ftheta\left(\tilde{\bx}\right)}{\mathsf{F}} \]
\[ \tilde{\bx}_{\textrm{g}} = \argmin{\tilde{\bx} \in \mathcal{G}_{\textsf{L}}} \norm{\bH\left(\bx\right) - \ftheta\left(\tilde{\bx}\right)}{\mathsf{F}} \]
\[ \tilde{\bx}_{\textrm{c}^{\star}} = \argmin{\tilde{\bx} \in \mathcal{G}_{\textsf{C}}} \norm{\bH\left(\bx\right) - \ftheta\left(\tilde{\bx}\right)}{\mathsf{F}} \]
We used the MB-ML paradigm to structure a neural architecture and optimize a gradient-descent process
SNR=5dB
Solution [Le Magoarou]: Phase-insensitive distance
\[ d\left(\bh_i, \bh_j\right) = \sqrt{2-2 \frac{\abs{\bh_i^\herm \bh_j}}{\norm{\bh_i}{2} \norm{\bh_j}{2}}} \]
B. Park, H. Do, N. Lee, “Transformer-Based Nonlinear Transform Coding for Multi-Rate CSI Compression in MIMO-OFDM Systems”, in IEEE ICC, 2025
French version
En présence de mes pairs.
Parvenu à l’issue de mon doctorat en traitement du signal, et ayant ainsi pratiqué, dans ma quête du savoir, l’exercice d’une recherche scientifique exigeante, en cultivant la rigueur intellectuelle, la réflexivité éthique et dans le respect des principes de l’intégrité scientifique, je m’engage, pour ce qui dépendra de moi, dans la suite de ma carrière professionnelle, quel qu’en soit le secteur ou le domaine d’activité, à maintenir une conduite intègre dans mon rapport au savoir, mes méthodes et mes résultats.
English version
In the presence of my peers.
With the completion of my doctorate in signal processing, in my quest for knowledge, I have carried out demanding research, demonstrated intellectual rigour, ethical reflection, and respect for the principles of research integrity. As I pursue my professional career, whatever my chosen field, I pledge, to the greatest of my ability, to continue to maintain integrity in my relationship to knowledge, in my methods and in my results.
Baptiste CHATELIER